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Figure 1: An overview of CausalSynth’s workflow with an example causal model, showcasing (a) variable definition and causal
relationship configuration, (b) built-in visualization tools, and (c) generated data in JSON format.

ABSTRACT

Understanding and inferring causal relationships between variables
is a fundamental task in visualization and visual analysis. However,
it can be challenging to verify inferences of causal relationships from
traditional observational data because they often lack a ground truth
causal model, complicating the evaluation of visual causal inference
tools. To address this challenge, we introduce CausalSynth, an in-
teractive web application designed to generate synthetic datasets
from user-defined causal relationships. CausalSynth enables users to
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define acyclic causal graphs via a user-friendly graphical interface,
establish interrelationships between variables, and produce datasets
that reflect these desired causal interactions. The application also
includes built-in tools for visualizing the generated datasets, facilitat-
ing deeper insights into the user-defined causal structure and aiding
the validation of the generated data. By providing a user-friendly
interface for synthetic data generation and visualization based on
ground truth causal models, CausalSynth helps support more mean-
ingful evaluations of visual causal inference technologies.

1 MOTIVATION

The primary motivation behind the development of CausalSynth
stems from the significant challenges associated with causal infer-
ence in observational data. One major issue is the presence of
confounding variables, which can obscure true causal relationships
and lead to biased estimates [1]. Observational data often lacks the
controlled conditions of randomized experiments, making it difficult
to draw definitive conclusions about causality [4].



Moreover, the lack of public benchmark datasets for causal infer-
ence further complicates the evaluation of visual causal inference
tools. Unlike associative techniques, which can be easily tested
and compared using widely available datasets, causal inference
techniques are perhaps most meaningfully validated using data for
which explicit causal relationships are known. However, these causal
ground truths are rarely available [5]. This scarcity hinders the devel-
opment and validation of new visual causal inference methodologies.

Additionally, real-world data is often incrementally available and
non-stationary, posing further difficulties in maintaining accurate
causal models over time. The need to continuously update models
with new data without compromising previous estimations is a com-
plex task that requires sophisticated methods for continual learning
and adaptation [2].

Approaches like CausalVis [3] tried to better visualize such causal
graphs, however, there’s still limited effort in visually assisting
dataset generation. To address these challenges, CausalSynth aims
to provide a robust and efficient tool for generating and validating
(via visualization) synthetic datasets with user-defined causal rela-
tionships. These can serve as ground truth datasets for the evaluation
of visual causal inference technologies.

2 DESIGN AND IMPLEMENTATION

The design of CausalSynth emphasizes user experience, featuring a
clean and intuitive interface for generating, inspecting, and down-
loading synthetic datasets. Central to the user experience is the
acyclic graph definition area. Implemented using React Flow, this
area enables users to visually define new variables and manage the
relationships between them. Users can assign different colors to spe-
cific variables to enhance visual clarity. These colors are consistently
reflected elsewhere in the application.

When a user clicks on a node, detailed information about the
node is displayed. This includes options for an explicit Python-
based formula used to generate data for the node’s corresponding
variable, or higher-level parameters such as range, categorical values,
and corresponding probability values that can be used to generate
data for built-in distribution types. Similarly, clicking on an edge
reveals details about the variable relationship it represents, including
the source and target of the connection. This helps users understand
the structure of the causal relationships represented within the graph.

The formula box in which users can define explicit formulas in-
cludes syntax highlighting and other features for ease of use.For
instance, a virtual keyboard with buttons containing common NumPy
methods and Python operators is featured. In addition, an “Incom-
ing Variables” section includes buttons representing the incoming
variable names for the selected node, making it easy to incorporate
causal relationships to connected variables. These are color-coded
to match the user-selected colors in the causal graph.

After defining the graph, including all variables’ attributes and
interrelationships, a JSON file is generated to document the speci-
fication. This JSON file can be viewed and saved by the user, and
can be imported back into the web application to restore the same
configuration at a later time. The same JSON is processed by the
system’s Flask-based backend to generate a corresponding synthetic
data set. A CSV file containing the generated data is returned to the
browser to be viewed within the application or downloaded for sub-
sequent analysis. Within the application users can generate various
visualizations, including scatter plots, bubble plots, histograms, pie
charts, and causal graphs. These features enable users to quickly in-
spect the data generated by their causal graph and make adjustments
if necessary. The source code of CausalSynth will be released via
GitHub following the review cycle, enabling users to freely leverage
these tools to create ground truth datasets to aid in the evaluation of
their own visual causal inference software.

3 EXAMPLE USAGE

A typical workflow for CausalSynth is illustrated in Fig. 1. The
process starts in Fig. 1 (a), where three variables are presented: Dis-
tance, Price, and Flights, with each assigned a distinct color for clar-
ity. Distance is defined as a numerical, independent variable with a
specified range of 100 to 3000. Price is a numerical, dependent vari-
able calculated using a formula involving Distance: 100 + 20 *
math.log(Distance) + 10 * np.random.random(). Flights
is a categorical variable that depends on both Price and Distance,
categorized as one of “Budget,” “Standard,” “Premium,” or “Luxury”
based on thresholds set for Distance and Price.

Interdependence between these variables is visually represented
in the acyclic graph with edges between nodes that the user connects.
In Fig. 1 (a), Price depends on Distance, and Flights depends on
both Price and Distance, while Distance has no incoming nodes.
The user clicks on the Price node to display the variable’s incoming
node (Distance) and outgoing node (Flights), as well as the formula
used to calculate Price and the incoming variable name Distance
highlighted in the formula box. While this example includes a
relatively simple graph, much more complex models can be quickly
created in a similar way.

After defining the variables and their relationships, the user speci-
fies the number of desired samples to be generated, in this case 30
as shown in the bottom section of (a). A JSON file (c) capturing the
full configuration is created and can be viewed, saved, and imported
back into the web app at a later time. Meanwhile, a CSV file is
generated containing the requested samples.

The data in the CSV file can be inspected in the application using
various visualizations as shown in (b). In the bubble plot shown,
the size of the data points is set to represent their respective price.
The colors are set to represent different flight categories. Upon
closer inspection of the plot, the user can see a notable logarithmic
relationship between Price and Distance; additionally, as distance
and price increase, flights tend to be categorized into more luxurious
categories. This example demonstrates how CausalSynth enables
users to define causal relationships, generate synthetic data, and
visualize it to validate that the variables are interacting in ways that
appear to reflect the intended underlying causal model.

4 CONCLUSION

CausalSynth can quickly and intuitively generate synthetic datasets
based on user-defined causal relationships while providing ground-
truth data for the development, evaluation, and comparison of new
visual causal inference technologies. The JSON-based specification
also enables the persistence of generative causal model data for
provenance and reuse. It can be a valuable tool in support of this im-
portant and active area of visualization research. Future work should
explore more effective visual representations and user-friendly inter-
actions through real-world user studies.
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