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Figure 1: The first row shows four visualizations of the kidney stone treatment dataset [5] from Table 1: (a) a traditional visualization
of treatment A (TA) and treatment B (TB), (b)-(d) alternative visualization designs that include the counterfactual subset (TB(CF)) and
remainder subset (TB(REM)). The second row shows four visualizations of the Titanic survival dataset [1] from Table 2: (e) a traditional
visualization of female and male passengers, (f)-(h) alternative visualizations including the counterfactual subset (Male(CF)) and
remainder subset (Male(REM)).

ABSTRACT

Visualizations are widely used to compare aggregate statistics be-
tween subsets of data. However, aggregation can often obscure
patterns or trends and produce misleading views of the data. One
example of this risk is Simpson’s Paradox, a phenomenon that can
commonly occur in interactive data visualizations that enable ad hoc
grouping and filtering. We explore the potential of counterfactuals—
widely used in causal inference— to help counter the risks of invalid
conclusions due to Simpson’s Paradox in data visualization.

1 INTRODUCTION

Aggregation is widely used in visualization to show summary statis-
tics for groups of data points. Providing interactive capabilities to
navigate different levels of aggregation and apply filters can enable
exploratory analysis. These capabilities, although powerful, can also
introduce risks. One such risk is Simpson’s Paradox, a phenomenon
in which trends that appear at one level of aggregation may disappear
or reverse when data is subdivided into lower levels of aggregation.

For example, one widely-cited real-world example comes from
an analysis of alternative medical treatments for kidney stones [5].
As shown in Table 1, the study included patients with stones of
variable size, classified as large or small. Compared to Treatment
B (TB), Treatment A (TA) performed best on small stones and best
on large stones. However, counter-intuitively, Treatment B appeared
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to have a higher success rate overall. This paradox is a result of the
unequal distribution of large and small stone patients assigned to
each treatment.

During exploratory analysis, this type of reversal of trends at
different levels of aggregation can happen without user awareness
and can lead users to make incorrect conclusions. This motivates
research exploring ways to counter such problems, including the
work exploring the use of counterfactuals described here.

2 RELATED WORK

Two broad areas of prior research inform the proposed use of coun-
terfactuals for countering Simpson’s paradox. First, prior research
has explored visual ways to communicate or mitigate Simpson’s
paradox and related phenomena. This includes visualizations that
show data concurrently at multiple levels of aggregation (e.g., [2]) to
facilitate comparisons. In our own work, we have explored visualiza-
tions of selection bias to identify when subgroups have potentially
important differences [3], as well as to adjust samples by applying
weights that facilitate more appropriate comparisons [4].

The second area of related work is focused on the concept of
counterfactuals. Counterfactual reasoning is a fundamental concept
in statistical causal inference [7]. This approach is based on the idea
of constructing hypothetical scenarios (“what if things were the same
except for this one fact?”) and then making inferences about what
would happen under those counterfactual conditions. In the context
of visualization, counterfactuals have been applied to improve model
interpretability [8] and support more accurate inferences of causal
relationships from visualizations [6].

3 COUNTERING SIMPSON’S PARADOX

As explained in the kidney stone example (Sect. 1), the misleading
aggregate success rates leading to Simposon’s Paradox are due to
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Figure 2: (a-b) A typical visualization comparing two groups TA and TB.
(c) A counterfactual subset TB(CF) contains data points just like those
in TA. This also creates TB(REM) with the remaining data points from
TB. (d) A comparison of TA and TB(CF) avoids Simpson’s Paradox.

differences in the TA and TB populations. The easier-to-treat patients
with small stones were much more likely to receive TB, making the
overall success rate for TB higher even though it was less effective
than TA.

To apply counterfactual reasoning to this problem, one can ask
“What if we had a population of patients exactly like those treated
with TA, except that we treated them with TB instead?” While this
counterfactual is not represented directly within the data, it can be
simulated by sampling from the population receiving TB a subset
of patients similar to those patients receiving TA. We refer to this
sample as the counterfactual subset of TB, or TB(CF). See Fig. 2.

TB(CF) will comprise a group of patients with similar variable
distributions to TA. In this simple example, the only attribute in
addition to those already visualized (treatment type and success) is
kidney stone size. We therefore sample a group of patients from TB
with the same ratio of large:small kidney stones as TA to include in
TB(CF). The TB patients remaining after this sampling process are
noted as TB(REM).

Because, by construction, the subset TB(CF) has the same dis-
tribution of kidney stone sizes as TA, aggregate statistics such as
the success rate of the treatment can be fairly compared within a
visualization. The remaining subgroup of TB patients, TB(REM), can
also be visually compared to TB(CF) to see how the differences in
subgroup composition (in this case, differences in stone size) may
have impacted the aggregate statistics (in this case, the success rate
of Treatment B).

It is important to note that selecting the counterfactual subset
is itself a significant challenge. The example outlined here has a
straightforward solution due to the fact that there is just a single at-
tribute (stone size) known about individual patients in each treatment
group. The approach outlined above can scale to higher-dimensional
datasets (a benefit versus prior approaches mentioned in Sect. 2), but
the selection of the counterfactual subset becomes a more complex
step in the process.

4 EXAMPLES

To demonstrate how this counterfactual approach can be applied, we
provide two examples using a pair of simple real-world data sets.
The first uses data from the kidney stone treatment study introduced
in Sect. 1 [5]. The data for this study is shown in Table 1, where
treatment TA outperforms TB for both small and large stones, but TB
appears to succeed at a higher rate when viewed in aggregate due
to different distributions of stone sizes. In this example, TB(CF) is
sampled from TB as shown in the table. The success rate for TB(CF)

is worse than TA, which can be visualized as shown in Fig. 1 to more
accurately communicate the desired comparison between treatments.

We note that the remaining patients in TB(REM), as we would ex-
pect, have “easier to treat” small stones which were over-represented
in the original TB. If Simpson’s Paradox is present, we should expect
to see the pattern displayed in Fig. 1(d). More specifically, Fig. 1(d)
shows a relatively large difference between the counterfactual (CF)
and remaining (REM) subsets of TB, with the difference straddling
the TA value.

The second example applies the counterfactual approach to sur-
vival data from the RMS Titanic [1]. This data, shown in Table 2,
describes survival rates for passengers by gender and cabin class.
In this case, there is no occurrence of Simpson’s Paradox. Females
survived at a higher rate overall and across all classes, even though
the distribution of cabin class differed by sex. Applying the counter-
factual approach in this case results in the data shown in the final two
columns of Table 2 and illustrated in Fig. 1(e)-(h). Unlike the kidney
stone example, in this case, the CF and REM subgroups show little
difference, thus Simpson’s paradox is not present (see Fig. 1(h)).

Table 1: Success rates of kidney stone treatments (TA and TB) for small
and large stones [5]. Values in bold imply that TB is more effective
overall (83%), however, TA is more effective for both small (93%) and
large (73%) stones individually, resulting in Simpson’s Paradox.

Stone Size TA TB TB(CF) TB(REM)

Small 93% (81/87) 87% (234/270) 88% (23/26) 86% (211/244)
Large 73% (192/263) 69% (55/80) 69% (55/80) N/A (0/0)

All 78% (273/350) 83% (289/350) 74% (78/106) 86% (211/244)

Table 2: Survival rates from the RMS Titanic [1] for male and female
passengers per cabin class, with highest rates in bold. Simpson’s
Paradox is not present in this case.

Cabin Female Male Male(CF) Male(REM)

Class 1 97% (91/94) 37% (45/122) 37% (35/94) 36% (10/28)
Class 2 92% (70/76) 16% (17/108) 16% (12/76) 16% (5/32)
Class 3 56% (81/144) 14% (47/347) 14% (20/144) 13% (27/203)

All 77% (242/314) 19% (109/577) 21% (67/314) 16% (42/263)

ACKNOWLEDGMENTS

This research is made possible in part by NSF Award #2211845.

REFERENCES

[1] Titanic survival dataset. https://www.kaggle.com/c/titanic/
data.

[2] Z. Armstrong and M. Wattenberg. Visualizing Statistical Mix Effects and
Simpson’s Paradox. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2132–2141, Dec. 2014. Conference Name: IEEE
Transactions on Visualization and Computer Graphics.

[3] D. Borland, W. Wang, J. Zhang, J. Shrestha, and D. Gotz. Selection
Bias Tracking and Detailed Subset Comparison for High-Dimensional
Data. IEEE Transactions on Visualization and Computer Graphics,
26(1), 2020.

[4] D. Borland, J. Zhang, S. Kaul, and D. Gotz. Selection-Bias-Corrected
Visualization via Dynamic Reweighting. IEEE Transactions on Visual-
ization and Computer Graphics, 27(2):1481–1491, 2021. Conference
Name: IEEE Transactions on Visualization and Computer Graphics.

[5] C. R. Charig, D. R. Webb, S. R. Payne, and J. E. Wickham. Comparison
of treatment of renal calculi by open surgery, percutaneous nephrolitho-
tomy, and extracorporeal shockwave lithotripsy. British Medical Journal
(Clinical research ed.), 292(6524):879–882, Mar. 1986.

[6] S. Kaul, D. Borland, N. Cao, and D. Gotz. Improving visualization
interpretation using counterfactuals. IEEE Transactions on Visualization
and Computer Graphics, 28(1):998–1008, 2021.

[7] J. Pearl, M. Glymour, and N. Jewell. Causal Inference in Statistics: A
Primer. Wiley, 2016.

[8] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The what-if tool: Interactive probing of machine learning
models. IEEE transactions on visualization and computer graphics,
26(1):56–65, 2019.

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data

	Introduction
	Related Work
	Countering Simpson's Paradox
	Examples

