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Abstract 

Medical institutions and researchers frequently collect longitudinal data by conducting a series of surveys 
over time. Such surveys generally collect a consistent and broad set of data elements from large sets of 
patients at predefined time points. In contrast to the sparse and irregular retrospective observational 
data found in electronic medical record (EMR) systems, prospectively gathered survey data captures the 
same variables at the same time steps across the full study population. Most analyses of this type of 
longitudinal data focus on understanding the how various properties of the patient cohort associate with 
specific variables or outcomes measures. However, this approach may miss interesting patterns within 
constellations of correlated variables. In this paper we describe a visual analysis method for survey data 
that considers interactions across the full, high-dimensional set of collected variables. Our approach first 
applies cluster analysis algorithms to survey data collected at each time point independently. We then 
visualize patient cluster dynamics over time, allowing investigators to identify common patient subgroups 
and evolution patterns, inspect derived statistical summaries, and compare findings between patient 
subgroups. We demonstrate our method using data from a survey that followed a cohort of approximately 
1,000 patients admitted to the emergency department (ED) following a motor vehicle accident. The 
survey includes data for each patient at four discrete time points, beginning at admission to the ED and 
continuing for one year. 

 
1. Introduction 
 
As health information technology becomes more pervasive, institutions are collecting an ever-growing 
amount of data about the patient experience. In addition to volumes of retrospective electronic health 
records (EHRs), a significant amount of information is also being gathered via prospective studies designed 
to collect a specific set of data over time from targeted populations. In contrast to the sparse and irregularly 
observed data found in EHRs, prospective surveys typically produce dense and consistent sets of data that 
capture the same data at the same time points for all participants. This provides a rich resource for those 
seeking to understand temporal, population-level trends in outcomes of interest. Most often, analyses of 
data from these study focus on understanding of how various properties of the patient cohort associate with 
specific variables or outcomes measures. While this approach can be highly informative, it may also miss 
interesting and harder-to-find patterns that are diffused across constellations of correlated variables. In 
addition, those interested in understanding the data have no ability to explore outcomes and relationships 
interactively. 
 
This paper describes an interactive visual analysis method designed to help discover and highlight such 
hard-to-find patterns. Our approach applies user-configurable cluster analysis algorithms to participant data 
independently at each time step. This produces a set of multiple cohort segmentations, one for each time 
period. We then visualize changes in patient cluster membership over time, capturing the aggregate 
dynamics of how participants evolve from time step to time-step including common patient subgroups and 
transitions. Interaction capabilities allow users to inspect derived statistical summaries for specific cohorts, 
and compare findings between patient subgroups. 
  
These methods draw on a rich history of work exploring temporal visualization of patient medical data as 
we describe in the Related Work section. Particularly relevant are flow-based diagrams that show, as our 
method does, aggregate cohort evolution patterns over time1–4. These techniques have shown that graphical 
visualizations of patient data arranged temporally (in timeline fashion) can provide a useful way for 
physicians to view the progression of sets of patients. However, these methods typically focus on 
visualizing low-level medical events such as individual diagnoses or medications. Unfortunately, medical 
data is of such high dimensionality that the number of variations is very large. Moreover, small variations 



in time or sequence that may not be clinically significant can significantly alter the results. For these 
reasons, more general higher-level trends are often difficult to uncover. Our method, because it focuses on 
survey data that are from specific time points, takes a different approach. Rather than plotting specific 
medical events, our system identifies and visualizes clusters of similar but not identical patients. This 
allows high-level pattern identification and analysis that overcomes challenges of scale that occur due to 
small variations in underlying patient data.  
 
To validate our approach, we applied our method to patient survey data from a survey of approximately 
1,000 patients who were injured in a vehicular accident and required treatment at an emergency room. The 
survey captured a wide variety of data from these patients at four discrete time steps: arrival at the 
emergency department (ED), six weeks later (W6), six months later (M6), and one year later (Y1)5. 

We developed an interactive visualization prototype based on our methods and used it to (1) analyze the 
survey data to identify clusters of similar patients at each of the four time points, (2) visualize patient 
trajectory between clusters over time, and (3) support interactive exploration and comparison of descriptive 
statistics calculated for each dynamically computed patient cluster. The prototype supports a range of 
clustering algorithms and parameter controls, allowing for exploration of different types of patient 
groupings. 
 
2. Related Work 
 
Given the central role of time in many medical datasets, temporal visualization methods have been used in 
many different medical informatics contexts. For example, a number of systems have adopted visualization 
as a means to convey data for individual patients. For example, Plaisant et al. developed LifeLines6 which 
provides a timeline-based visualization environment for personal patient medical histories. Similarly, 
Powsner and Tufte developed a graphical summary of patient status using a table of individual plots of 
treatment data and test results7. As a final example, TimeLine by Bui et al.8 outlines another variation of 
vertically arranged timelines representing an individual patient’s data. 
 
Recognizing the importance of understanding population-level dynamics, a number of more recent research 
efforts have proposed visualization methods designed for depicting data for sets of patients. Fails et al. 
developed PatternFinder9, an interface that provides result-set visualizations to search for and discover 
temporal patterns within multivariate datasets which was applied to analyze patients with high blood sugar. 
Meanwhile, Wang et al.10 presented an interactive visual tool to visually align sets of individual patient 
timelines around sentinel events through which patients exhibiting specific event sequences could be found. 
 
While the examples above support the visual analysis of data from multiple patients, they achieve this 
through small multiples: repeated graphical elements that individually represent each patient. Large-scale 
cohorts—with hundreds, thousands, or even millions of patients—pose a difficult challenge for this 
approach. For that reason, scalable flow-based visualization techniques have been used to depict patient 
evolution in aggregate. Examples of this approach include LifeFlow3, Outflow2,11, and DecisionFlow4. 
These techniques all use individual medical events (e.g., a single diagnosis or medication event) to group 
patients into a single flow. In this paper, we propose an alternative method that displays clusters of 
statistically similar patients who might not share identical event sequences in their record.  
 
Our approach is certainly not the first to use statistical analysis to group patients and visualize the results. 
Patient stratification has long been used to prioritize patient populations or identify those most at risk12. 
However, previous methods have differed from those presented here in that they have not applied cluster 
analysis algorithms independently at different periods of time, have not visualized these changes in cluster 
membership, and/or have not allowed users to interactively explore the data by selecting characteristics 
upon which to cluster patients or specific subgroups to cluster.  
 
3. Visual Analysis Methods 
 
Our visual analysis method begins with raw study data as input and produces an interactive visualization of 
patient cohort evolution over time as output. This section describes the key steps in the process of 



converting the input data to this final visual display. As shown in Figure 1, these steps include data 
normalization, variable selection, cluster algorithm configuration, cluster analysis, and visualization. 

 
Figure 1. Our method begins with raw survey data which is then normalized and prepared for cluster 
analysis. Users can optionally select a subset of survey variables (all variables are used by default) and 
cluster algorithm parameters to use for computing the clusters at each time step. The clusters are then 
visualized, allowing users to (a) explore changes in cluster membership across time steps and (b) compare 
summary statistics for each cluster. 
 
Data Normalization. Because the approach outlined in this paper is designed for prospective study data, it 
assumes that the input data is both dense (that all variables are populated for all patients) and temporally 
aligned (that measurements are captured for all patients at the same time points after alignment). In 
practice, however, some data cleaning is often required to omit (or impute) missing values and to clean up 
other data anomalies. In addition, a data normalization process is required to convert measurements 
captured using different scales into comparable measurements. This is an important pre-processing step and 
is necessary to obtain valid results from the cluster analysis algorithms.  
 
Variable Selection. By default, the proposed method clusters patients at each of the datasets time points 
using all available variables. However, it is often desirable to focus the clustering algorithm on specific 
subsets of the variable space. For example, an investigator may wish to omit demographic data from his/her 
analysis. A variable selection panel in the user interface supports this function by allowing users to check 
(or uncheck) certain variables dynamically over the course of an analysis. The checked variables are 
considered selected, and only the selected variables will be considered by the system when applying the 
clustering algorithm. By making this control interactive and part of the user interface, ad hoc exploration 
patterns are supported. Users can change the variable selection, quickly see the impact of this change on the 
visualization, and then follow up with additional changes to the selected set of variables. While the user can 
in theory select any of the available variables (several hundred in the dataset used here), the user interface 
in our prototype implementation provides a short list of clinically interesting variables selected by content 
experts. More specifically, we focus on nine variables including four demographic factors and five pain 
symptom measures. 
 
Cluster Algorithm Configuration. In addition to controlling the set of selected variables used in the 
cluster analysis, users can configure the clustering algorithm itself. This includes both a selection of the 
algorithm used and any associated input parameters required by the selected algorithm. Our prototype 
implementation supports four distinct clustering algorithms. Two methods, Ward’s Method for hierarchical 
clustering13 and K-Means clustering14, allow the user to specify the number of clusters to identify at each 
time point in the study data. The two other supported clustering methods take tuning parameters that 
indirectly control the degree of clustering as a function of the underlying data distributions: DBSCAN15 and 
Affinity Propagation16. By providing flexibility in configuring the algorithm and parameters used during 
clustering, our method allows users to explore the differences in patterns identify by the various algorithms.  
 
Cluster Analysis. The preceding three steps—data normalization, variable selection, and algorithm 
configuration—prepare the inputs required to perform the actual cluster analysis computations. Based on 
the specified algorithm configuration and the set of selected variables, the normalized participant data is 
processed to generate a multiple sets of cluster assignments. One set of clusters is independently computed 
for the entire patient population at each time point in the data.  



 
Visualization. Once the clusters have been computed for each time step, the results are visualized for 
interpretation and visual analysis. Our visualization design is patterned after a Sankey diagram and shows 
both the computer clusters and patients’ changes in cluster memberships between time periods. More 
details of our visual design are described in the next section. 
 
4. Visual Design 
 
The visualization component of our system adopts a flow-based design that builds on traditional Sankey 
Diagrams. In our design, we represent the individual time points in the study data as a vertical line arranged 
horizontally across the screen. At each time point, blue rectangles are used to represent individual clusters 
of patients as computed by the methods described in the previous section. This design is reflected by the 
vertical blue rectangles in Figures 2 and 3. The height of each blue rectangle corresponds to the fraction of 
the overall population that belongs to the corresponding cluster. Larger clusters have taller blue rectangles. 
The cluster rectangles at one time point are connected those at neighboring time points via gray, curving 
edges. Each edge represents a set of patients that move from one cluster at a particular time to another 
cluster at the subsequent time step. As with the blue cluster rectangles, the height of each gray curing edge 
corresponds to the number of patients. 
 
Interaction plays a critical role in the user interface (UI) design. The visualization is placed in a central 
canvas areas surrounded by two sidebars. The leftmost sidebar contains the variable selection controls and 
the clustering algorithm configuration controls. These allow user feedback to flow back to earlier stages of 
the method as illustrated in Figure 1. Once making a set of modifications has been made, users can click on 
the “Update Visualization” button to trigger a new round of clustering computations based on the current 
settings in the user interface. As the computation completes, the visualization is updated to reflect the 
resulting change in patient cluster assignments. This change is reflected in the differences between Figures 
2 and 3. Both figures show a visualization of the same underlying patient data and are processed by the 
same clustering algorithm. Only the lists of selected variables are different between the two screenshots. 
 
In addition, users can mouse over both edges (the grey areas) and nodes (the blue rectangular areas) to learn 
more about the corresponding participants. Details such as the number of participants and cluster labels are 
included in the provided data. Finally, users can select an edge to see dynamically computed statistics from 
the corresponding cluster. The statistical summary, visible in Figures 2 and 3, shows mean values for 
variety of features and other descriptive statistics. By clicking one by one on the edges in the visualization, 
users can compare and contrast the profiles of different patient subgroups and begin to learn what 
participant factors might associate with the progression patterns seen in the Sankey-based visualization. 
 
 

 
Figure 2. A screen capture of our prototype implementation applied the study data. The four vertical lines 
of blue rectangles correspond to the four time steps in the data: ED, W6, M6, and Y1. The left sidebar 
shows the systems variable selection controls while the right sidebar shows detailed statistics for the 
selected group of participant. 



  
 

 
Figure 3. An alternative view of the same data being visualized in Figure 2. The differences in pathways in 
the visualization are caused directly by the user’s interaction with the variable controls panel.  
 
5. Conclusions 
 
This paper described a visual analysis method designed to uncover patterns of participant evolution in 
longitudinal survey data. Our approach applies cluster analysis algorithms independently to the subsets of 
survey data collected at each time step. We adopt a Sankey-based visualization design to illustrate 
participant cluster dynamics over time. Interactions are supported, allowing investigators to identify 
common participant subgroups and evolution patterns, inspect derived statistical summaries, and compare 
findings between participant subgroups. We demonstrated our method using data from a 1-year survey 
capturing data about pain for roughly 1,000 participants who were admitted to the emergency department 
(ED) following a vehicular accident. We demonstrate how our methods can be applied to this dataset and 
show examples highlighting the types of analyses that our approach supports. 
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