
The Design and Implementation of StrandCast

Brian Begnoche
bbegnoch@cs.unc.edu

David Gotz
gotz@cs.unc.edu

Ketan Mayer-Patel
kmp@cs.unc.edu

University of North Carolina at Chapel Hill
CB #3175, Sitterson Hall

Chapel Hill, NC 27599 USA

ABSTRACT
In this paper, we present a detailed overview ofStrandCast, an
application-layer multicast protocol for stretch invariant applica-
tions. StrandCast’s distribution topology is a linear list of partici-
pating receivers, which we call astrand. We describe three bene-
fits that StrandCast has over traditional application-layer multicast
topologies. The first is low and constant stress levels. The sec-
ond is fast join and leave operations. The third benefit is a semi-
reliable transmission scheme that makes long strands practical for
very large groups of receivers. We also discuss various stretch in-
variant applications for which StrandCast is most suitable, includ-
ing systems that utilize receiver-driven layered multicast for scal-
able congestion control.

1. INTRODUCTION
Traditional unicast delivery is designed to support one-to-one

data flows where a single source sends data packets to a single
recipient. In one-to-many applications, unicast requires that the
source replicate every packet for each recipient. For an application
with a large group of recipients, unicast is extremely inefficient be-
cause its required bandwidth scales linearly with the size of the
group.

Multicast transmission is designed to remove the inefficiencies
associated with unicast and one-to-many applications. First pro-
posed as an infrastructure based network-layer solution [4], multi-
cast is designed to replicate data packets within the network. This
allows a source to transmit only one copy of its data irregardless of
the number of receivers.

Unfortunately, infrastructure multicast requires the participation
of ISPs due to its reliance on network-layer support within the net-
work itself. This requirement, coupled with the slow pace of adop-
tion among ISPs, has posed an enormous challenge for the deploy-
ment and reliability of network-layer multicast services.

In response to these challenges, several application-layer multi-
cast protocols (i.e. [1, 2, 3, 5, 9]) have been designed that do not re-
quire support from the underlying network-layer. As a result, they
rely only on end-user systems and and are relatively easy to deploy.
However, application-layer multicast protocols are inherently less

UNC Technical Report TR05-004
February, 2005

efficient than network-layer solutions because they require replica-
tion and forwarding to be performed by the receivers themselves.

Application-layer multicast protocols typically maintain a hier-
archical overlay topology designed to distribute data from one or
more sources to the group of receivers with minimalstress, a mea-
sure of the data replication load on overlay links, andstretch, a
measure of the latency from source to receiver . As receivers join
and leave the group, the topology must be updated to optimize these
two metrics.

The minimization of stress and stretch are often in conflict for a
given topology. A low-stretch distribution topology calls for few
network hops between the source and any receiver. This is ac-
complished by creating a high-degree distribution tree. However,
high-degree trees increase the stress on interior nodes. Different
application-layer multicast protocols have addressed this conflict
using a wide variety of solutions which attempt to balance the com-
peting requirements for both low stretch and low stress.

However, there are a class of applications for which the stretch
metric has no impact on performance. For example, applications
that make use of carousel transmission, where data is repeatedly
sent by the source, will be largely unaffected by changes in stretch.
We refer to these applications asStretch Invariant.

One such stretch invariant application is pyramid broadcasting
[10]. A pyramid broadcasting system repeatedly transmits seg-
ments of a video across several channels. For receivers in this sys-
tem, it is not important how long it takes for data to transit from
the source. It is critical only that data begins arriving shortly after
a request, even if it left the source long ago.

1.1 StrandCast
In this paper, we introduceStrandCast, an application-layer mul-

ticast protocol for stretch invariant applications. Because Strand-
Cast is designed for applications immune to the effects of stretch,
we attempt to minimize stress without regard to the impacts on
stretch. This removes the need to balance competing optimizations
and leads to a simple and efficient application-layer multicast de-
sign. StrandCast maintains an overlay distribution topology as a
linear list of participating receivers, which we callstrands.

The simplicity of the overlay topology provides several bene-
fits over traditional application-layer multicast topologies, includ-
ing low and constant stress levels, as well as very fast join and leave
operations. In addition, the semi-reliable transmission portion of
the StrandCast design makes long strands practical for very large
groups of receivers.

1.2 Organization
The remainder of this paper is organized as follows. We begin

with a review of related work in Section 2. An overview of Strand-
Cast, together with a detailed design review, is discussed in Section



3. Section 4 defines the application programming interface for the
three types of nodes defined by StrandCast. We conclude with a
discussion of future work in Section 5.

2. BACKGROUND
In this section we discuss a selection of previous work most re-

lated to our research. We begin by reviewing IP multicast, the most
widely accepted standard for network-layer multicast. We then dis-
cuss a host of application-layer multicast alternatives to IP multi-
cast. Finally, we define stretch invariance and present two examples
of stretch invariant applications.

2.1 IP Multicast
Multicast transmission is an efficient mechanism for one-to-many

applications. Traditional unicast transmission requires a server to
transmit a copy of each packet for every receiver. Multicast, how-
ever, allows a server to transmit a single copy of each packet re-
gardless of the number of receivers. The multicast protocol itself
manages packet replication and delivery to the group of receivers.

Multicast has been standardized around the IP multicast proto-
col, a design that requires core network routers to maintain group
membership information and to replicate and forward packets. Group
management is performed via join and leave requests that update
the soft-state information maintained on intermediate routers.

Unfortunately, IP multicast’s reliance on support within the core
of the network requires that internet service providers adopt and
support IP multicast within their networks. To date, IP multicast
has not been widely deployed. In addition, the use of unreliable
join and leave messages combined with the use of soft-state infor-
mation can lead to long latencies in response to changes in group
membership.

2.2 Application-Layer Multicast
The recognized problems with IP multicast have led researchers

to search for alternatives that are more easily deployable and capa-
ble of providing improved services. Several competing protocols
for Application-Layer Multicast (ALM) have been proposed [1, 2,
3, 5, 9] as alternative multicast solutions.

ALM protocols, in contrast to IP multicast, are implemented at
the application layer and require no direct support from the un-
derlying network infrastructure. This feature alone makes ALM
protocols easier to deploy. However, because they rely only on
participating nodes for packet replication and forwarding, the dis-
tribution tree for an ALM protocol is typically less efficient than
the corresponding IP multicast distribution tree. As a result, the ef-
ficiency of ALM protocols are typically measured by two metrics
[3]: stretchandstess. These metrics have been defined to compare
the efficiency of an ALM protocol’s distribution tree to the ideal
tree as defined by IP multicast.

2.2.1 Stretch
Application-layer multicast inevitably results in longer end-to-

end latencies in comparison to IP multicast. IP multicast packets
follow the shortest path between source and receiver as determined
by IP routing. However, ALM utilizes an overlay network in which
packets are sent from the source to individual receivers via unicast
links between participating peers. As a result, the typical transmis-
sion path for a packet using ALM is less efficient. The increase in
server-to-receiver latency is referred to asstretch.

Most ALM protocols aim to minimize the impact of stretch by
continuously optimizing the network overlay distribution tree. This
leads to constant changes in the overlay topology and can make
joining or leaving a group an expensive operation.

2.2.2 Stress
Peers within an ALM session are responsible for packet dupli-

cation and forwarding. As a result, identical packets regularly tra-
verse individual links multiple times. This is in contrast to the more
efficient IP multicast protocol which never sends a particular packet
over a link more than once. The number of times a packet travels
over a link is referred to asstress.

Stress is typically greatest towards the root of the overlay distri-
bution topology. ALM protocols regularly employ a high-degree
distribution tree designed to reduce stretch. This creates a short
tree, reducing the server-top-receiver latency. However, the high
degree requires nodes with many children in the overlay topol-
ogy to forward the same packet multiple times. The result is a
highly stressed node. Furthermore, due to the constant optimiza-
tion of their overlay topology, an individual peers will be subjected
to highly variable stress levels as they migrate from interior to leaf
positions. The high variability in link stress can cause problems
both for high bandwidth applications and for applications that man-
age congestion by subscribing to multiple multicast groups (i.e.
Receiver-Driven Layered Multicast [8]).

2.3 Stretch Invariance
Existing proposals for application-layer multicast continuously

optimize the overlay topology to satisfy the competing needs to
reduce both stress and stretch. This leads to complex distribution
trees and optimization algorithms. However, there are a number of
applications for which stretch has no impact on performance. We
call thesestretch invariantapplications.

For example, systems that employ carousel transmission are in-
herently stretch invariant. These applications repeatedly transmit
the same unit of data over a communication channel. Individual re-
ceivers simply tune in when they are ready to receive data and wait
for the information to be repeated. There are several carousel-based
applications, including the datacycle architecture [7] for databases,
pyramid broadcasting [10] for video-on-demand, and channel set
adaptation [6] for large-scale streaming of digitized spaces work.

An application-layer multicast algorithm designed specifically
for stretch invariant applications can avoid the difficult task of op-
timizing for the competing needs of both stretch and stress. By
removing the minimization of stretch from the design criteria, we
are able to design a highly efficient and scalable application-layer
multicast algorithm capable of supporting stretch invariant applica-
tions.

3. STRANDCAST
StrandCast is an application-layer multicast protocol designed

specifically for stretch invariant applications. Its design avoids the
overhead expenses associated with the hierarchical overlay topolo-
gies typically used by most other application-layer protocols.

In this section, we describe the distrubition topology employed
by StrandCast where receivers are organized into linear lists of re-
ceivers calledstrands. Within a strand, participants assume one
of three roles: source, sink, or receiver. StrandCast can scale to
support large user groups, because its receivers can both join and
leave strands with minimal latency and with only local effects on
the overall distribution topology.

3.1 Distribution Topology
StrandCast arranges its receivers into linear lists called strands.

Each node within a strand plays one of three roles: a source, a sink,
or a peer. A single source node is located at the start of each strand.
Similarly, a single sink node is located at the end of each strand. In
between the source and the sink, there are zero or more connected



Source

Peer Peer

Sink

Peer

Figure 1: A single strand of nodes arranged in StrandCast’s
linear topology. Every strand begins with a source and ends
with a sink, with a number of peers located in between.

peers. Figure 1 illustrates the linear topology of a typical strand.
Data flow originates with the source and passes down from peer
to peer toward the sink. Each strand is independent, so multiple
strands require multiple sources, sinks, and sets of peers. However,
this independence allows a group of sources and a group of sinks
to be distributed across multiple machines.

3.2 Three Node Roles
The next three sections will introduce StrandCast’s three node

roles and explain in more detail how they participate in StrandCast.
Refer to Section 4 for details on the APIs for each role.

3.2.1 The Source
The source is located at the front of the strand and is the point of

origin for all data that flows down a strand. It maintains a connec-
tion with only the first peer in the strand, and this single connection
has three effects. The first effect is that the source only participates
in a join transaction when a peer joins the strand while it is empty.
The second effect is that it only participates in a leave transaction
when the first peer in the strand leaves. The third effect is that when
the source sends a data packet, it only has to send it once. It is cru-
cial that the source be this simple, because a source that uses very
little resources and bandwidth makes it possible to scale StrandCast
to a high number of strands.

3.2.2 The Sink
The sink serves two purposes. Its primary purpose is access con-

trol for new peers joining a strand. When a peer joins, it makes an
initial connection with the sink to get the information it needs to
attach itself to the end of the strand. Like the source, the sink al-
lows StrandCast to scale to thousands of strands because it isolates
access control in a separate node that can be distributed if needed.
We will discuss joining a strand in greater detail in Section 3.3.
The secondary purpose of the sink is to coordinate control mes-
sages when there is a break in the strand from an ungraceful leave.
We will discuss ungraceful leaves in Section 3.6.

3.2.3 Peers
Peers are responsible for the receiving and forwarding data pack-

ets along the strand. Because of StrandCast’s linear topology, a peer
is aware of only its two neighbors. The upstream neighbor is either
the source (when the peer is first in line), or the previous peer in the
strand. The downstream neighbor is either the sink (when the peer
is the last in line), or the following peer in the strand.

The peer is the most complex of the three node roles. It maintains
a connection with two neighbors, therefore it must participate in the
transactions of its neighbors joining and leaving the strand as well
as when the peer itself joins and leaves. During these transactions,
the peer must maintain an unbroken flow of data packets. Later,
we will discuss two StrandCast properties that add complexity to
the peer: semi-reliable transmission in Section 3.5 and ungraceful
leaves in Section 3.6.

Peer Sink

Joining
Peer

Join
Notify

Notify Ack
Join Ack

Connect

Final Ack Final Ack

Connect Ack

Time Time Time

Figure 2: The message transactions of a StrandCast join oper-
ation.

3.3 Joining a Strand
When a peer joins a strand, it performs two parallel and depen-

dent three-way handshakes, one with the sink and the second with
the last peer of the strand. They are dependent because each step
of one handshake depends on steps taken in the other. In addition,
there is a call and response between the sink and the last peer of the
strand. Figure 2 illustrates the message transactions of a StrandCast
join operation.

A new peer initiates a join by sending a join message to the sink.
The sink then notifies the last peer of the strand of the join, and that
peer acknowledges. From this point, the sink and the last peer of the
strand no longer communicate, and the last peer waits for the new
peer to establish a connection. The sink continues its handshake
with the new peer by acknowledging the original join message sent
by the new peer.

Once the new peer receives a join ACK from the sink, it sends
a message to the last peer to initiate a new connection, and the last
peer acknowledges. The new peer sends ACKs to the sink and to
the last peer to finish both handshakes. At this point, both peers
and the sink are in a stable state where the last peer before the
join forwards strand packets to the new peer, the new peer receives
packets at the tail of the strand, and the sink waits for other peers
to join the strand.

3.4 Leaving a Strand
When a peer leaves the strand, the three nodes involved are the

peer leaving, its upstream neighbor, and its downstream neighbor.
Leaving a strand is somewhat simpler than joining because there
are no interleaved handshakes. Instead, there are three call and
response message transactions. Figure 3 illustrates the message
transactions of a StrandCast leave operation.

A peer initiates a leave by sending a message to both of its neigh-
boring peers that notifies them of the leave. This initial message
also notifies them of the sequence number at which the leave will
occur, which we call thesplice point. By doing this, the leaving
peer assumes responsibility for forwarding all packets up to that
splice point, and therefore its neighboring peers know to resume
data packet transfer starting with the next sequence number after
that splice point. This guarantees reliable transmission since the
leaving peer will forward packets before it leaves. However, but



Peer PeerLeaving
Peer

Leave

Connect
Connect Ack

Time

Time

Time

Leave

Leave AckLeave Ack

Figure 3: The message transactions of a StrandCast leave op-
eration.

this also assumes the leaving peer will behave according to Strand-
Cast specification. We will discuss the deviant case of an ungrace-
ful leave in Section 3.6.

The upstream and downstream peers will acknowledge the leav-
ing peer’s leave messages, after which the downstream peer sends
a connect message directly to the upstream peer. The upstream
peer acknowledges the connection and begins sending data packets
to the downstream peer. At this point, the upstream peer is in a
stable state where it forwards data packets to its downstream peer.
However, the downstream peer is in a pseudo-stable state until it
receives all the data packets up to the splice point from the leaving
peer. Once the leaving peer finishes draining, it severes its remain-
ing connection and the downstream peer is in a true stable state.

3.5 Semi-Reliable Transmission
StrandCast provides semi-reliable transmission to overcome the

effects of packet loss, which are magnified by the increased stretch
in StrandCast’s linear topology. Packets must travel throughO(n)
links. This is larger than theO(lg(n)) links typical in most tree-
based ALM algorithms. The increased stretch means that there is
greater opportunity for a packet to be lost along its path. Further-
more, in the event of a loss, the effect is more disastrous since it
affects all peers below the link where the loss occurs. In the linear
case, the average impact of a loss will affectn

2
peers.

StrandCast uses three customizable transmission rate parameters
based on a target rate to provide semi-reliable transmission. We say
that StrandCast’s transmission scheme iselasticbecause it allows
a node to temporarily deviate from its constant data transmission
rate to recover from loss. StrandCast assumes that all peers can
sustain this constant transmission rate without suffering congestion.
If a peer cannot meet that requirement, then it cannot participate in
the strand. We define StrandCast’s three transmission parameters
as the total transmission rate, the data transmission rate, and the
retransmission rate.

RT : The total transmission rate defines a maximum of how fast
a node can send data packets, both to forward new packets and to
retransmit rerequested ones.RT is the rate that peers must be able
to sustain in order to participate in a strand.

RD: The data transmission rate is the rate at which a node can
forward incoming data packets, and it cannot exceed the total trans-
mission rate. Equation 1 is the first requirement for semi-reliable
transmission.

RD <= RT (1)

RR: The retransmission rate is the rate at which a node can re-

transmit lost data packets. It also cannot exceed the total transmis-
sion rate, so Equation 2 is the second requirement for semi-reliable
transmission.

RR <= RT (2)

There is no requirement thatRD + RR = RT . In fact, the three
values can be anything as long as Equations 1 and 2 are satisfied. If
RD+RR > RT , then there is some overlap in the allotment of data
transmission and data retransmission. In this caseRR has priority
over RD. The priority ofRR means that StrandCast attempts to
handle any retransmission requests first up to the rateRR, and it
attempts to send data second and at a rate as close toRD as possible
without exceedingRT .

If a node sending data packets experiences no loss, it will for-
ward data packets at the same rate at which it receives them, since
it does not spend any bandwidth on retransmitting packets. The
amount of total bandwidth not alloted to data transmission,RT −
RD, is not used in this case. However, if a node does experience
loss, one of two things may happen. The first possibility is that
the node is able to both forward packets and satisfy retransmis-
sion requests without exceedingRT . Otherwise, if enough loss
occurs such thatRT is not sufficient to forward new data packets
and retransmit others, then some portion ofRD must be sacrificed
and data packets will accumulate in a buffer. When the sum of
the number of incoming packets and the number of retransmit re-
quests drops back belowRT , then the node will use the remaining
portion ofRR to send buffered packets. StrandCast’s transmission
scheme is elastic because it uses unused retransmission bandwidth
to ”catch up” and send data packets that were buffered during pe-
riods of congestion. This elasticity is what allows StrandCast to
provide the same quality of service to all peers.

StrandCast’s reliability depends on the size ofRR relative toRT .
If RR is low, then a strand will use a small portion ofRT to handle
loss. Therefore the overhead of alloting retransmission bandwidth
is minimal, but the likelihood of a permanent loss occurring be-
cause retransmission requests exceedRR is greater. On the other
hand, ifRR is high, then a strand is more reliable because it uses
a large portion of its total bandwidth to handle loss. The drawback
is that a smaller amount of the total bandwidth is used to forward
data. We can express StrandCast’s reliability with the ratioRR

RT
. If

RR = RT , then the strand is totally reliable, because in the case of
total loss, a peer will use all its available bandwidth to rerequest lost
packets before it will forward packets it has received. However, it
will reliably accomodate total loss at the expense of possibly having
to buffer a large number of packets it cannot send until congestion
decreases and the peer then can use some ofRT to send them.

3.6 Ungraceful Leaves
An ungraceful leave happens when a peer disappears from a

strand without performing a leave operation. This could happen,
for example, if a client’s host loses its network connection or crashes.
The upstream neighbor will detect such a break by a timeout re-
sulting from data packets not being acknowledged. When a peer
detects a break, it sends a break message to the sink, which will
respond by sending a repair message up the strand that contains
the address of the peer above the break. Peers will pass this repair
message up the strand until the peer immediately below the break
will attempt to send a repair message to the missing peer, that mes-
sage will timeout, and the peer will detect that the break is above it.
Since the repair message passed up the strand contains the address
of the peer above the break, the peer below the break can initiate a a
transaction between the two peers to splice the strand back together.



3.7 StrandCast as a Receiver-Driven Multi-
cast

StrandCast’s constant and minimal stress on a link due to its lin-
ear topology makes it an ideal candidate for receiver-driven multi-
cast (RLM) [8] for stretch invariant applications. RLM subdivides
a high single high bit-rate stream into a handful of lower bit-rate
streams, each of which is transmitted to its own multicast group.
The low bit-rate streams are called layers. Because each layer is
relatively thin, receivers can typically subscribe to multiple layers
at the same time. Individual receivers can control the bit-rate of
their incoming data stream by changing the number of layers to
which they subscribe. In this way, RLM enables course-grained
congestion control that scales to very large groups of users.

The weakness of RLM is that it does not perform well with typ-
ical tree-based ALM protocols because links suffer from highly
variable stress that can reach high levels. RLM was initially in-
tended for IP multicast where a node could forward one packet
to multiple recipients and the packets would replicate within the
network. In the case of tree-based ALM protocols, a node must
replicate each packet and forward it once for every recipient. For
example, a node with ten children will have to send out ten packets
for every one it receives, and the resulting stress on its link due to
the outgoing packets will limit the node’s subscription to an RLM
group.

StrandCast, however, minimizes stress because each node only
has one downstream peer and therefore only has to forward each
packet once. As a result, an application can extend StrandCast
to use the ideas of RLM by using a group of many thin strands
instead of one to accomodate receivers with different amounts of
bandwidth.

4. NODE ROLE APIS
The APIs of the StrandCast nodes are designed to be simple and

customizable through the use of event handlers. They use object-
oriented programming techniques, and each of the three node types
is a class: Source, Sink, and Peer. StrandCast also contains a vir-
tual class called Handler, which a user can use to create a Handler
subclass that implements the event handler functions he choses to
behave according to a particular application using StrandCast. Each
of the three node classes has three basic function type pairs that are
(1) allocating and deallocating a node, (2) joining and leaving a
strand, and (3) registering and unregistering event handlers.

4.1 Source API
Source allocation methods:

• Source(char* src name, unsigned short srcport, double
total rate, int max burst length, double rexmit rate, int
max rexmit burst length, int max packet size): Source con-
structor. src nameandsrc port specify a local address and
port. total rate andmaxburst lengthspecify a token bucket
that defines the strand’s total transmission rate,RT , rexmit rate
andmaxrexmit burst lengthspecify a token bucket that de-
fines the strand’s retransmission rate,RR, andmaxpacketsize
specifies the maximum allowable payload size of a data packet
in the strand. The data transmission rate of the strand,RD, is
not specified explicitly, but rather a source sets it implicitly
by sending data packets at that rate with thesendmethod.

• ˜Source(): Source deconstructor

Source methods to open and close a strand:

• void open(char* sink name, unsigned short sinkport) :
Opens a new strand by connecting to the sink specified by
its addresssink nameand its portsink port.

• void close(): Closes the strand. Aftercloseis called,open
cannot open a new strand. Instead, a new source object must
be used.

Source data transmission methods:

• void send(char* data, int size): Sends a data packet through
the strand. The size of the data block should not exceed
the maximum packet size specified in the constructor. The
source implicitly sets the strand’s data transmission rate,RD,
by sending packets at that rate.

• int canSend(): Returns1 if the source is in a state in which
it can send.

Source event handler registration functions: The only option for
a source event handler is the control handler, which is mostly used
for debugging by reporting incoming and outgoing StrandCast con-
trol messages and state changes. Refer to Section 4.4 for more in-
formation on StrandCast event handlers.

• void registerControlHandler(Handler *ch) : Registers a con-
trol event handler.

• void unregisterControlHandler(Handler *ch) : Unregisters
a control event handler.

4.2 Sink API
Sink allocation methods:

• Sink(char* sink name, unsigned short sinkport) : Sink
constructor.sink nameandsink port specify a local address
and port.

• ˜Sink(): Sink deconstructor

Sink methods to open and close a strand:

• void open(char* src name, unsigned short srcport) : Joins
with a source specified by its addresssink nameandsink port
to create a new strand.

• void close(): Closes the strand. Aftercloseis called,open
cannot open a new strand. Instread, a new sink object must
be used.

Sink event handler registration functions: The only option for a
sink event handler is the control handler, which is mostly used for
debugging by reporting incoming and outgoing StrandCast control
messages and state changes. Refer to Section 4.4 for more infor-
mation on StrandCast event handlers.

• void registerControlHandler(Handler *ch) : Registers a con-
trol event handler.

• void unregisterControlHandler(Handler *ch) : Unregisters
a control event handler.

4.3 Peer API
Peer allocation methods:

• Peer(char* peer name): Peer constructor.peernamespec-
ifies a local address.

• ˜Peer(): Peer destructor



Peer methods to join and leave a strand:

• void join(char* sink name, unsigned short sinkport) : Joins
a strand by connecting to the sink that performs as access
control to the strand.sink nameand sink port specify the
address and port of the sink.

• void leave(): Leaves a strand. Afterleaveis called,join can-
not join another strand. Instead, a new peer must be used.

• int isOpen(): Returns1 if the peer is subscribed to a strand.

Peer accessor methods to get strand transmission parameters:

• double getRate(): Returns the total transmission rate,RT ,
of the strand.

• int getRateDepth(): Returns the token bucket depth of the
total transmission rate,RT , of the strand.

• double getRexmitRate(): Returns the retransmission rate,
RR, of the strand.

• int getRexmitDepth(): Returns the token bucket depth of
the retransmission rate,RR, of the strand.

• int getMaxPacketSize(): Returns the maximum packet size
allowed on the strand.

Peer event handler registration functions: The peer API allows
the registration of event handlers for when a peer receives a data
packet, rerequests a data packet, retransmits a packet, experiences
a local loss, recognizes a global loss, successfully joins a strand,
and successfully leaves a strand. It also allows the registration of
a control handler, which is mostly used for debugging by report-
ing incoming and outgoing StrandCast control messages and state
changes. Refer to Section 4.4 for more information on StrandCast
event handlers.

• void registerRecvHandler(Handler *rh) : Registers a re-
ceive event handler.

• void unregisterRecvHandler(Handler *rh) : Unregisters a
receive event handler.

• void registerRereqHandler(Handler *rrh) : Registers a
rerequest event handler.

• void unregisterRereqHandler(Handler *rrh) : Unregisters
a rerequest event handler.

• void registerRexmitHandler(Handler *rxh) : Registers a
retransmit event handler.

• void unregisterRexmitHandler(Handler *rxh) : Unregis-
ters a retransmit event handler.

• void registerLocalLossHandler(Handler *llh) : Registers a
local loss event handler.

• void unregisterLocalLossHandler(Handler *llh) : Unreg-
isters a local loss event handler.

• void registerGlobalLossHandler(Handler *glh): Registers
a global loss event handler.

• void unregisterGlobalLossHandler(Handler *glh): Unreg-
isters a global loss event handler.

• void registerJoinHandler(Handler *oh) : Registers a join
event handler.

• void unregisterJoinHandler(Handler *oh) : Unregisters a
join event handler.

• void registerLeaveHandler(Handler *lh): Registers a leave
event handler.

• void unregisterLeaveHandler(Handler *lh): Unregisters a
leave event handler.

• void registerControlHandler(Handler *ch) : Registers a con-
trol event handler.

• void unregisterControlHandler(Handler *ch) : Unregisters
a control event handler.

4.4 Handler API
Handler is a virtual class that a user can use to create an event

handler or group of event handlers that respond to StrandCast events.
The user can select which callback methods of Handler to imple-
ment and can implement all of them in one Handler subclass or
multiple Handler subclasses. If the callback methods of a Handler
subclass are implemented for more than one kind of event, then
that handler must be registered for each kind of event. All five con-
trol events are registered by the same method,registerControlHan-
dler. The twelve StrandCast events are described in the following
paragraphs, followed by a specification of the callback methods of
Handler.

Receive Event: A receive event occurs when the peer receives a
data packet from its upstream neighbor.

Rerequest Event: A rerequest event occurs when the peer must
rerequest the retransmission of a lost packet from its upstream neigh-
bor.

Retransmit Event: A retransmit event occurs when the peer must
retransmit a packet rerequested by its downstream neighbor.

Local Loss Event: A local loss occurs when the peer is unable
to rerequest a lost packet from its upstream neighbor because all
of the available retransmission rate,RR, is used. A local loss is a
permanent loss in the strand.

Global Loss Event: A global loss occurs when a peer does not
receive a packet because it was permanently lost somewhere in the
strand above it. A local loss at some peer implies a global loss at
all peers below.

Join Event: A join event occurs when a peer successfly joins a
strand.

Leave Event: A leave event occurs when a peer successfly leaves
a strand.

Control Packet In Event: A control packet in event occurs when
a node receives a StrandCast control message.

Control Packet Out Event: A control packet out event occurs
when a node sends a StrandCast control message.

Control State Change Event: A control state change event occurs
when a node changes state.

Control Address Event: A control address event occurs when a
node establishes its local address and port.

Control Transmission Parameters Event: A control transmission
parameters event occurs when a sink or peer receives the transmis-
sion parameters of a strand.

4.5 Handler Callback Methods

• virtual void handle data(DataPacket *p): Handles a re-
ceive event. The user can access the new data packet through
p.



• virtual void handle rereq(u int16 t seqnum): Handles a
rerequest event.seqnumis the global sequence number of
the rerequested packet.

• virtual void handle rexmit(u int16 t seqnum): Handles a
retransmit event.seqnumis the global sequence number of
the retransmitted packet.

• virtual void handle local loss(u int16 t seqnum): Handles
a local loss event.seqnumis the global sequence number of
the lost packet.

• virtual void handle global loss(u int16 t seqnum): Han-
dles a global loss event.seqnumis the global sequence num-
ber of the lost packet.

• virtual void handle join() : Handles a join event.

• virtual void handle leave(): Handles a leave event.

• virtual void handle packet in(CntrlPacket *p) : Handles
a control packet in event. The user can access the control
packet throughp.

• virtual void handle packet out(CntrlPacket *p) : Handles
a control packet out event. The user can access the control
packet throughp.

• virtual void handle state change(connstate t state): Han-
dles a control state change event.stateis the new state.

• virtual void handle address(char* addr, u int16 t port) :
Handles a control address event.addr andport are the local
address and port.

• virtual void handle transmit info(double total rate,
int max burst length, double rxmit rate,
int max rxmit burst length, int max packet size): Han-
dles a control transmission parameters event.total rate and
maxburst lengthdescribe the token bucket of the total trans-
mission rate, RT , of the strand, rxmit rate and
maxrxmit burst lengthdescribe the token bucket of the re-
transmission rate,RR, of the strand, andmaxpacketsizeis
the maximum allowed payload size of a data packet in the
strand.

5. CONCLUSION AND FUTURE WORK
We have presented the design for StrandCast, a novel application-

layer multicast algorithm designed for stretch invariant applica-
tions. StrandCast employs a linear overlay topology that reduces
complexity and alleviates most of the overhead in topology man-
agement associated with more traditional tree-based application-
layer multicast algorithms.

StrandCast maintains a linear strand of connected users for each
multicast group. Within a strand, participants assume one of three
roles: source, sink, or peer. Each strand begins with a source that is
responsible for transmitting the stream of data packets to the group.
Each strand ends with a sink that is responsible for access con-
trol and maintenence of the strand. Between the source and sink
are zero or more peers which participate as data receivers and for-
warders.

The simplicity of StrandCast’s distribution topology provides a
number of desireable properties. Both join and leave operations
can be completed with very low latencies. In addition, the stress
placed on each participating receiver is minimal and held constant
throughout the session. This makes StrandCast an ideal solution for

stretch-invariant applications that rely on receiver-driven layered
multicast techniques for congestion control.

There are several possible improvements that can be made to
the current StrandCast implementation. For example, improving
recovery from ungraceful leaves can be made more efficient by in-
creasing peer awareness between nodes. Our current solution can
often require long delays before repairs are made as the repair mes-
sages propogate through the strand. Knowledge of neighboring
peers can provide protection against ungraceful leaves and reduce
the repair to a faster local operation.

Another future addition to StrandCast could be the ability to
manage the peers’ positions within the strand to overcome conges-
tion points. This could be accomplished via peer swapping, where
neighboring nodes within the strand could mutually decide to trade
positions in an effort to improve the overall performance of the
strand.

6. REFERENCES
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable

application layer multicast. InProc. of ACM Sigcomm, 2002.
[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.

Scribe: A largescale and decentralized application-level
multicast infrastructure.IEEE Journal on Selected Areas in
Communications, 2002.

[3] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProc. of ACM SIGMETRICS, 2000 2000.

[4] S. E. Deering and D. R. Cheriton. Multicast routing in a
datagram internetworks and extended lans.ACM
Transactions on Computer Systems, 8(2):85–110, May 1990.

[5] P. Francis. Yoid: Extending the multicast internet
architecture, 1999.

[6] D. Gotz and K. Mayer-Patel. A framework for scalable
delivery of digitized spaces.International Journal on Digital
Libraries, To Appear. Special Issue on Digital Museums.

[7] G. Herman, K. C. Lee, and A. Weinrib. The datacycle
architecture for very high throughput database systems. In
Proc. of ACM SIGMOD, 1987.

[8] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven
layered multicast. InProc. of ACM SIGCOMM, 1996.

[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast uisng content-addressable
networks. InProc. of 3rd International Workshop on
Networked Group Communication, 2001.

[10] S. Viswanathan and T. Imielinski. Metropolitan area
video-on-demand service using pyramid broadcasting.
Multimedia Systems, 4:197–208, 1996.


