
Design
�

Considerations for a Multi-Pr ojector Displa y Rendering Cluster

David Gotz

Departmentof ComputerScience
Universityof North CarolinaatChapelHill

Abstract

High-resolution,multi-projectordisplaysareoftenbuilt usingstan-
dardconsumerelectronics.Beforedesigninga PC-clusterrender-
ing systemto drive thesedisplays,a numberof issuesmustbead-
dressed. This paperprovides an overview of theseissues. The
issuesaddressedinclude the type of parallel renderingalgorithm,
load balancing,network latency, andnetwork overhead.The goal
of this paperis to provide a generaloverview of the designspace
andhighlight themajortradeoffs betweendifferentdesigns.

1 Intr oduction

Over the last few years,computershave becomefasterandmore
powerful by almostall measurements.Computerprocessorspeeds
have increased,memoryhasbecomecheaper, andharddrive sizes
have grown. However, thereis onecomputercomponentthat has
remainedlargely unchanged.Displays,suchasstandardcomputer
monitors,have remainedat a resolutionof aroundonemillion pix-
els.

To addresstheseconcerns,many researchgroupshave been
building multi-projector systemsthat combine readily available
consumerproductsinto single,unified displaysthat renderat far
higher resolutionthan traditionalcomputermonitors[4, 12, 6, 5,
2, 3]. An importantpart of any multi-projectordisplayis the un-
derlying renderingsystem.Somesystemsuselargesupercomput-
erswhile othersystemsusea distributedcomputercluster. Dueto
thelargemonetarycostassociatedwith a powerful supercomputer,
cheaperPC-basedcomputerclustersarea moreaffordableoption.

This paperwill addresssomeof the importantdesignconsider-
ationsassociatedwith PC-clusterrenderingfor multi-projectordis-
playsystems.Threeissueswill bediscussedin detail:

� Sorting in the Rendering Pipeline : Sorting is an impor-
tantpartof any parallelrenderingsystem.Thispapersurveys
varioussortingmethodsanddiscussestheir applicability to a
multi-projectordisplayclusterrenderingsystem.

� Load Balancing : Loadbalancingalgorithmsaredesignedto
optimizetheperformanceof parallelsystemsby distributing
work asevenly aspossibleacrosseachnodein the system.
This paperdiscussesstrategiesfor load balancingwithin the
renderingframework.

� Network Performance : We analyzethe impactof various
designdecisionson network performance. We utilize the
LogGPnetwork model to highlight specificnetwork perfor-
manceconcerns.

Therestof thispaperis organizedasfollows: Section2 provides
somebackgroundknowledgeon multi-projectordisplays,sorting
classifications,loadbalancingalgorithms,andtheLogGPnetwork
model.Section3 presentsarenderingalgorithmfor multi-projector
displaysthat is usedasa basisfor discussion.Section4 discusses
how sorting, load balancing,and network performanceapply to
clusterrenderingsystemsfor multi-projectordisplays. Section5

Figure1: Thethreedisplayclasses:a)Abutted,b) RegularOverlap,
c) RoughOverlap.

providesa few designsuggestionsbasedon thediscussionin Sec-
tion 4. Section6 addressesthe issueof systemscalability, andis
followedby a brief conclusion.

2 Backgr ound

2.1 Multi-Pr ojector Displa ys

As mentionedin theintroduction,anumberof researchgroupshave
investigatedmulti-projectordisplays.All of thesedisplayscreatea
singlehigh-resolutiondisplayby combininga collectionof lower
resolutionprojectors.Most of thesedisplaysfall into oneof three
broadclasses:1) abutted, 2) regular overlap, and3) roughoverlap.

2.1.1 Abutted Displa ys

Abutted displays are the first class of multi-projector displays.
Abutteddisplaysrequirethatall projectorsin the displaybe care-
fully alignedso thatno pixels overlap. Abuttedsystemsarefairly
commonand are usedin everything from sportsstadiumscore-
boardsto tradeshow exhibits. Someexamplesof abutteddisplays
aretheCAVE [2], Office of RealSoonNow” [1], andthe display
wall systematLawrenceLivermoreNationalLaboratory[12]. Fig-
ure1(a)depictsanabutteddisplay.

2.1.2 Regular Overlap Displa ys

A secondclassof multi-projectordisplaysrequiresprojectorsto be
carefullyalignedso that thereis somecontrolledoverlapbetween
projectors. The projectorsarerequiredto have precisegeometric
relationshipsthat ensureregularity betweenoverlap regions. The
overlapregionsareusedto blendimageryacrossprojectorbound-
aries. This is doneto help hide both photometricand geometric
discontinuitiesattheboundaries.Princeton’sScalableDisplayWall
[6] andStanford’s Interactive Mural [5] areboth examplesof reg-
ular overlapdisplays. Figure1(b) depictsa displayconfiguration
with regularoverlap.

2.1.3 Rough Overlap Displa ys

The third classof displaysystemsis the mostcomplex becauseit
allowsroughoverlapregionsbetweenprojectors.Theonly require-
ment is that projectorsactuallyoverlap. This meansthat overlap
regionscanbe of arbitraryshapeandsize. UNC’s PixelFlex sys-
temis anexampleof this typeof display[3]. Figure1(c) shows a
displaywith roughoverlapregions.

2.2 Sor ting Classification

An inherentstepin parallelrenderingalgorithmsis sortingthedata
andassigningit to individual processors.Thesameis truefor dis-
tributedrendering. Oncesorted,the datacanbe intelligently dis-
tributed to individual machinesfor processing. There are three
broad classesof parallel renderingalgorithms, eachperforming
the sort at a differentstagein the renderingpipeline. Thesethree
classes:1) sort-first, 2) sort-middle, and3) sort-last[8].

2.2.1 Sor t-Fir st

Sort-firstalgorithmsaredesignedto distributeworld-spaceprimi-
tivesasearlyin thepipelineaspossible.Beforestarting,regionsof
screenspaceareassignedto eachprocessor. In addition,eachprim-
itive is assignedto a processorin somearbitrary manner. Then,
during rendering,the processorsperform the minimal amountof
work that determinesthe screen-spacelocation of the primitive.
Typically, the algorithmwill computethe screen-spaceprojection
of the primitive’s boundingbox. This operationis known aspre-
transformation. Oncethepre-transformationis applied,theprimi-
tive is distributedto theappropriateprocessoror processors.

2.2.2 Sor t-Mid dle

While sort-firstalgorithmsdistributeworld-spaceprimitives,sort-
middle algorithmsare designedto distribute screen-spaceprimi-
tives.Regionsof screenspaceareassignedto individualprocessors
in thesamemannerassort-firstalgorithms.However, oncerender-
ing begins,sort-middlealgorithmscomputetheactualscreen-space
coordinatesof eachprimitive. This contrastswith sort-firstalgo-
rithms which don’t computethe actualprimitive coordinates,but
insteaduseboundingboxcoordinates.Oncethescreen-spacecoor-
dinatesareknown, theprimitivesaredistributedto theappropriate

processoror processors.In sort-middle,thesortoccursat thenatu-
ral split betweengeometryprocessingandrasterization.

2.2.3 Sor t-Last

Thethird andfinal classof parallelrenderingalgorithmsis sort-last.
Unlike sort-first and sort-middlealgorithms,sort-lastalgorithms
don’t distributeprimitivesat all. Instead,pixelsaredistributedfol-
lowing therasterizationstage.For eachpixel, thecomputeddatais
sentto theappropriateprocessoror processorswheredepthvalues
arecomparedfor visibility determination.

2.3 Load Balancing

Whendistributing computationaltasksacrossmultiple processors,
load imbalancesbetweenprocessorscould be detrimentalto the
system’s overall performance. The performancepenalty is a re-
sult from inefficientallocationof thesystem’s resources.Loadbal-
ancingalgorithmsattemptto redistributetasksacrossprocessorsin
orderto achieve a morebalancedloaddistribution. This paperwill
utilize theloadbalancingmodelpresentedby Willebeeket al [13].
In this model,therearefour stagesin the load balancingprocess:
1) processorload evaluation, 2) profitability determination, 3) task
migration, and4) taskselection.

2.3.1 Processor Load Evaluation

Thefirst stagein thegeneralloadbalancingmodelis processorload
evaluation. In this stage,a load valueis estimatedfor eachnode.
The evaluationat eachnode is madeindependently. The values
that resultfrom this stageareusedasinput in thesubsequentload
balancingstages.

2.3.2 Profitability Determination

Onceload evaluationhasbeenperformedon all nodes,the sys-
tem must perform load balancingprofitability determination. In
this stage,the systemcalculatesan imbalancefactor. The imbal-
ancefactoris a function of the load evaluationscoresobtainedin
thefirst stage.This factoris a measureof thedegreeof imbalance
in the system’s currentstate. The imbalancefactor is then com-
paredto theoverheadassociatedwith correctingthe imbalance.If
the systemdeterminesthat correctingthe load imbalancewill be
profitable,loadbalancingis initiated.

2.3.3 Task Migration

Onceload balancingis initiated, taskmigrationoccurs. Taskmi-
grationstartsby determiningwhichoverworkednodescanhandoff
work andwhich under-workednodescantake on additionalwork.
This is accomplishedby analyzingthe resultsfrom the load eval-
uation stage. This stageconcludeswhen the systemnotifies the
sourcesof thequantityof tasksto bemigratedandthedestination
nodefor eachmigration.

2.3.4 Task Selection

Thefourth andfinal stagein loadbalancingis taskselection.Once
asourcehasbeennotifiedhow muchwork it shouldhandoff andto
which nodeit shouldsendthetasks,thesourcemustdecidewhich
tasksto send. In this stage,the sourceshouldintelligently decide
which tasksaremostappropriatefor thegivendestination.Appro-
priatetasksareonesthatwouldrequiretheleastoverheadto transfer
andtasksthatarecontextually appropriatefor thedestinationnode.

2.4 The LogGP Network Model

Whendiscussinghow variousdesigndecisionsimpactnetwork per-
formance,it is useful to rely upon a network model suchas the
LogGP modelproposedby Martin et al [7]. The LogGP model
attemptsto describea network’s impacton distributedsystemsin
an implementation-neutralmanner. The modeldefinesfive major
parametersthatdescribeoverall network performance:

� Network Medium Latency, � : the time spentsendinga
messagefrom thesourceto thedestination.� accountsonly
for the time spentin transitthroughthenetwork. Time spent
in thesourceor destination’s processoris not includedin � .

� Network Overhead, � : refersto the time spentby the pro-
cessorin sendingor receiving a message.During the time
spenton � , theprocessorcannotengagein any otheractivity.

� Gap, � : the minimum time interval betweenconsecutive
messagetransmissionsor receptions.If onesourcesends(re-
ceives)a messageat time � , thesourcemustwait until �����
beforesending(receiving) a secondmessage.Thetime spent
waiting for � is thetime neededfor a messageto get through
thesystem’s bandwidthbottleneck.

� Bulk Gap, 	 : a secondmeasureof gap. Most machines
have differentmechanismsfor bulk messagetransferthanfor
shortmessages.The � gapparameterappliesto shortmes-
sageswhile the 	 gapparameterappliesto bulk messages.	
refersto the time-per-bytespenttransmittingbulk messages.
This is thereciprocalof thebulk transferbandwidth.

� Number of Processors,
 : thenumberof processorsin the
system.

� , � , � , and 	 aremeasuresof time. For example,thetimespent
sendingasinglepacket from onemachineto anotheris ������ . Both
the sourceprocessorand the receiver processorareutilized for �
secondseach.TheLogGPmodelassumesthatthenetwork capacity
is boundedsuchthat at most ��������� messagescanbe in transitat
any one time. The LogGP model assumesthat if the maximum
network capacityis reached,messagesarestalleduntil roomonthe
network is availablefor themessage.

3 A Rendering Algorithm

Beforeattemptingto designadistributedrenderingcluster, it is im-
portantto understandtherenderingalgorithmwithouttheadditional
concernsof clustercomputing.This paperpresentsoneparticular
algorithm designedfor multi-projectordisplayswith rough over-
lap. This sectionignoresall issuesrelatedto thedistributednature
of clustercomputing.

Therearetwo mainstagesin therenderingalgorithm. Thefirst
stageis known asGeometricRegistrationandis pre-computed.The
secondstageis theRenderingLoopandoccursin real-time.

3.1 Geometric Registration

Beforethe renderingprocessbegins, a numberof parametersthat
describethe geometricpropertiesof the display must be deter-
mined. Oncemeasured,the parametersareusedby the rendering
algorithmto blendtheprojectorstogetherto form aunifieddisplay.

The first goal of the geometricregistrationprocessis to deter-
mine eachprojector’s relationshipto a global coordinatesystem.
This is doneby computinga ����� matrix for eachprojectorthat
mapseachindependentpixel spacecoordinatesysteminto a single
unifiedcoordinatesystem.We referto this matrix asa collineation

matrix. A collineationmatrixmapsonetwo-dimensionalspaceinto
anothervia an affine transformation. In order to incorporatethe
collineationmatrix into a standardcomputergraphicspipeline,the
matrix is expandedto a ����� representation.This techniquewas
usedbyRaskar[10] to rendercorrectedimageryfor roughlyaligned
projectors.

The secondgoal of the geometricregistrationprocessis over-
lap estimation. Overlap regions can be computedby using the
collineationmatricesdeterminedin thefirst partof theregistration
process.We would thenlike to attenuatepixel intensityvaluesin
theoverlapregionsto hide the seams.A two-dimensionallookup
tablecanbebuilt for eachprojectorthatstoresa per-pixel attenua-
tion factor. This tableis calledanalphamap. To achieve effective
blendingin theoverlapregions,thealphamapis calculatedsothat
theattenuationfactorsof overlappingpixelssumto one.

3.2 Rendering Loop

In the renderingloop, the imagesfor eachprojectorarerendered
independently. The ����� collineationmatrix correspondingto the
appropriateprojectoris appendedto the front of the matrix stack
usedin therenderingloop. Therenderingpipelinethenproceedsas
normal.At theendof thepipeline,thealphamaskgeneratedduring
theoverlapestimationstageis appliedto thefinal imagery. When
theseimagesareprojectedonto thedisplaysurface,the result is a
unifiedhigh-resolutiondisplaybuilt from multiple roughlyaligned
projectors.

4 Major Cluster Design Factor s

When designinga renderingcluster that usesthe algorithm pre-
sentedin Section3, therearea numberof issuesthat mustbe ex-
plored. Thesedesignfactorsincludethe locationof sortingin the
renderingpipeline,assigningrolesto individualmachines,loadbal-
ancing,and the impactof designdecisionson network andcom-
municationperformance.In the following sections,eachof these
issueswill bediscussedin detail.

4.1 Sor ting in the Rendering Pipeline

Section2.2presentedthreetypesof sortingalgorithms.In this sec-
tion, we take a closer look at all threealgorithmsand how they
would apply to clusterrenderingfor multi-projectordisplays. At
first glance,bothsort-firstandsort-middleappearto beviableop-
tions. Conversely, sort-lastalgorithmsappearto be ill suitedfor
high-resolutionsystems. This is becausesort-lastsystemsmust
transmitpixel dataacrossthenetwork andmulti-projectordisplays
typically have avery largenumberof pixels.This is especiallytrue
asthedisplaysystemscalesupwardstowardshigherandhigherres-
olution.

Oneimportantfactorwhenchoosinga sortingalgorithmis the
availability of consumerlevel systems.Thelow pricefor fully inte-
gratedhigh-poweredgraphicssystemsmakessort-firstanattractive
option. Implementingsort-middlewith theseconsumerproducts
couldprove difficult.

However, it is still usefulto explore the computationalcostsof
eachapproachto determinewhich option is mostapplicable.The
following sections(4.1.1,4.1.2,and4.1.3)build uponthecostcom-
parisonpresentedby Molnaret al [8].

4.1.1 The Cost of Sor t-Fir st

Sort-firstalgorithmsincur an additionalcostdue to the overhead
of the pre-transformationstage. This cost is proportionalto the
numberof primitivesbeingrendered.Thenext overheadcostis due
to bucketization. Bucketizationrefersto theprocessof determining

Figure2: (a) Both the greenandorangetrianglesfall in a single
region. Theoverlapfactoris 1. (b) Thegreentrianglefalls in one
region while the orangetrianglefalls in two regions. The overlap
factor is 1.5. (c) Both trianglesfall in two regions. The overlap
factoris 2.

to whichprocessoreachprimitiveshouldbeforwarded.Thecostof
bucketizationis proportionalto both thenumberof raw primitives
and the overlap factor. The overlap factor is a measureof how
many regionsareconcernedaboutan averageprimitive. Figure2
illustratestheoverlapfactorconcept.

Thecostof bucketizationis relatedto theoverlapfactorbecause
primitivesfalling within overlappingregionsmustberedistributed
to more thanoneprocessor. It is importantto noteherethat un-
like the Molnar et al analysis,the overlap factor for both regular
androughoverlappingdisplaysmaynot approachone[8]. This is
becausethescreenregionsmayactuallyoverlap.In Molnar’s anal-
ysis, the regionswereassumedto have abuttedrelationships.The
overlapfactoris thereforeasignificantfactorin our analysis.

Following bucketization, the primitives must be distributed
acrossthenetwork. This costis proportionalto thenumberof raw
primitives,theoverlapfactor, andthefractionof raw primitivesthat
mustberedistributedbetweenprocessors.This fractionis very im-
portantin decidingwhich algorithmto use.To helpreducethere-
distribution fraction,thesystemwouldbeableto take advantageof
frame-to-framecoherence.Thecoherencecomesfrom thefactthat
a raw primitive assignedto oneprocessoris likely to be assigned
to thesameprocessorin thenext frame.Exploiting frame-to-frame
coherencecandrivedown theredistributionfraction,greatlyreduc-
ing thecostof redistribution. Oncetheprimitiveshave beenredis-
tributed,eachprocessorhandlesits assignedworkload.

4.1.2 The Cost of Sor t-Mid dle

Sort-middlealgorithmsdon’t performany pre-transformwork. In-
steadthey calculatetherealscreenspacecoordinatesfor eachprim-
itive. This work is donein sort-firstalgorithmsaswell. Thediffer-
enceis that in sort-firstalgorithms,it takesplaceafter redistribu-
tion. Following thecalculationof screenspacecoordinates,many
sort-middlealgorithmsperformtessellationof raw primitivesinto
display primitives. The ratio of display primitives to raw primi-
tivesis known asthe tessellationratio, � . Sort-middlealgorithms
performbothbucketizationandredistribution of displayprimitives

insteadof raw primitives.As a result,thecostsof thesetwo stages
of renderingare � timesgreaterthanfor sort-first.Following redis-
tribution,eachprocessorhandlesits assignedworkload.

4.1.3 Cost Comparison

Thecostdifferencesbetweensort-firstandsort-middlealgorithms
occur in threestagesof the rendingpipeline. The first difference
occursin the pre-transformationstage. Sort-first incursa penalty
proportionalto thenumberof raw primitiveswhile sort-middledoes
notneedto performthisstepandincursnocostatall. Notethatpre-
transformationcostsareincurredonly on theprocessorperforming
thecalculations.This meansthatasthe systemscalesup to more
projectorsandhigherresolution,therewill not be any increasein
network utilization dueto the pre-transformationstage. No addi-
tionalbandwidthwill beneeded.

The othertwo differencesaredueto the tessellationratio. For
sort-first,tessellationis notperformeduntil afterprimitivedistribu-
tion. For sort-middle,thecostof bothbucketizationandredistribu-
tion increasesproportionallyto thetessellationratio, � . Bucketiza-
tion costsareassociatedpurelywith computation,while redistribu-
tion costsimpactbothcomputationandcommunication.While the
addedcost of bucketizationare similar to the pre-transformation
costsof sort-firstalgorithms,the additionalcommunicationneeds
for sort-middleredistribution will translateinto moretraffic on the
network. The increasedtraffic will be short-messagetransfersof
primitives.As discussedin Section4.4, this would placeincreased
pressureon thenetwork’s shortmessagegaptime, � .

When designinga PC cluster for interactive rendering,all of
thesefactorsmustbeanalyzed.If thepre-transformationcostsare
lessthanthe addedcostof tessellation,thensort-first is the more
appropriateoption. Otherwise,sort-middlemaybemoreappropri-
ate. Recall that whencomparingthe costsof the two options,it
is importantto differentiatebetweencomputationcostandnetwork
cost.

4.2 Role Assignment

Renderingalgorithmscall for the completionof a numberof spe-
cializedtasks. As a result,a logical designdecisionwould be to
assignsomespecificrolesto eachPCin a cluster. OnePCshould
beassignedto eachprojector. Additional PCscouldbeusedto fur-
ther divide the work load, but would requireadditionaldatato be
transmittedacrossthenetwork at theendof therenderingpipeline.

In addition,oneor morePCsshouldbein chargeof distributing
primitivesacrossthe system.Therecould be onemastermachine
in the clusterin charge of synchronizationfor the other PCsand
othertasksthatmayrequirea singlepointof control.However, the
designmust be carefulwhenassigningroles to the masterPC to
avoid bottlenecks.If at all possible,algorithmsshouldbedesigned
to avoid acentralcontrolpoint. This is particularlyimportantasthe
scaleof thesystemincreases.

Machinesmayperformone,many, or all of therolesin thesys-
tem, but it is importantto determinewhat the roles areandhow
theclusterresourcesshouldbeallocated.Figure3 depictsa typical
arrangement.

4.3 Load Balancing

Regardlessof how effectively resourcesare allocatedby role as-
signment,the loadon eachmachineduring run time will fluctuate
andcreateimbalances.Imbalancesin loadmight negatively affect
theclustersperformance.Section2.3 presenteda four phaseload
balancingmodel. This sectionwill explorehow themodelcanbe
appliedto thedistributedrenderingpipeline.

Figure3: Thisfigureshowsa typicalclusterarrangement.Theblue
machinerepresentsthe applicationhost and control PC. The red
machinesare the individual PCsassignedto eachprojector. The
projectorsarerepresentedin green.Thethick blackline represents
a highspeedpoint-to-pointnetwork.

4.3.1 The Load Balancing Task

Thegenericloadbalancingmodelredistributestasksbetweenpro-
cessorsto balancethe computationalload. Before analyzingthe
load balancingmodel any further, it is importantto discusswhat
a taskis in the context of a distributedrenderingcluster. Section
2.2 statedthat both sort-firstandsort-middleassignedregionsof
screen-spaceto eachprocessor. Theseregionswerefixed,andfor
multi-projectordisplaysystems,they couldcorrespondedto there-
gion coveredby theprocessor’s projector. Becausetheregionsas-
signedto eachprocessorarefixed, the load on eachprocessoris
dependenton thegeometriccomplexity of thescreen-spaceregion
assignedto it.

To facilitate load balancing,it is desirableto allow the regions
associatedwith eachprocessorto changewith time. However, this
couldresultin pixel datatargetedfor oneprojectorbeingcomputed
ataprocessorboundto adifferentprojector. To solve thisproblem,
asmallnumberof pixelswouldthenneedto betransmittedover the
network at theendof thepipeline.

With this new approach,thesystemcandivide screenspaceup
into regionssmallerthantheregionsassociatedwith any singlepro-
jector. Thesystemcouldstartwith eachof thesmallerregionsasso-
ciatedwith theprocessorthatwill projectthatareaof screenspace.
Thesystemcould thenbecapableof redistributing thesesmall re-
gionsof screenspaceto othernodesin the systemto accomplish
loadbalancing.Thebalancingcomesat theadditionalcostof for-
wardingthe final pixel dataacrossthe network to the appropriate
node.Becausebulk datatransfermechanismscouldbeusedto dis-
tribute thepixel data,theadditionalcostwould likely rely heavily
on the bulk messagegap, 	 . The balancingmight also causea
slight increasein primitive distribution by disruptingtheframe-to-
framecoherenceexploited by the sorting algorithm. The costof
this increasewould rely on theshortmessagegap, � .

Using this approach,the task that is beingdistributedfor load
balancingis thework associatedwith a smallareaof screenspace.
ThePrincetonScalableDisplayWall usesa similar methodfor re-
distributingwork in a renderingcluster[11].

4.3.2 Folding Load Balancing Into The Rendering
Pipeline

Giventhecomputationalcostsof loadbalancing,it appearsat first
glancethatit mightnotbeappropriatefor agraphicsrenderingsys-
temdesignedfor real-timeframerates.However, it is oftenpossible
to take advantageof frame-to-framecoherencein order to imple-
menta low cost load balancingalgorithmthat is fully compatible
with therenderingalgorithmoutlinedin previoussections.

There are two main sourcesof computationin the rendering
pipeline. This first sourceis thegeometryprocessing.Thesecond
sourceis rasterization.A roughmeasureof loadevaluationfor the
geometrystageis thenumberof primitivesatanode.A roughmea-
sureof rasterizationloadis thenumberof primitivesmultiplied by
theaverageamountof screen-spaceareafor a primitive. Calcula-
tion of this loadmeasurerequiresthattheentirerenderingpipeline
finish to completion.However, wewould like to have theloadesti-
mationbeforewestartprocessingprimitivesin orderto balancethe
load. Luckily, frame-to-framecoherencecanbe exploited at this
stage.Loadevaluationcanbeperformedat theendof thepipeline
and the resultscan be usedto balancethe next passthroughthe
pipeline.

Theprofitability determinationstagecanbe insertedat thevery
start of the pipeline. Before initiating the renderingprocess,the
systemshouldcomparetheloadevaluationswith thecostof balanc-
ing. Thecostis a measurementof thetime requiredto redistribute
tasksaswell asthenetwork resourcesneededby theredistribution.
If load balancingis not beneficial,the systemshouldcontinueon
asnormal. If loadbalancingis beneficial,the taskmigrationstage
begins.

During task migration, nodeswith the highestload shouldbe
notifiedthat they areconsideredsourcesfor loadbalancing.How-
ever, thesourcesshouldnot just blindly sendtasksto under-loaded
nodes.Doingthiswouldcreateafragmentedregionof screenspace
to beassignedto eachnode.Becauseof thesubstantialoverlapfac-
tor, this would createa largeamountof replicatedwork, increasing
thetotalamountof computationrequiredby thesystem.

A moresophisticatedtaskmigrationstrategy would take advan-
tageof the spatialrelationshipsbetweenthe projectorsassociated
with eachnode. If a sourceprocessoris overloaded,it will push
taskstowardsneighborsthatarelessloadedthanthesource.These
neighborswill performsimilaroperationsonthenext iteration.This
strategy slows down the responsivenessof the load balancingop-
eration,but greatly reducesfragmentationin screenspace. This
techniqueof context sensitiveload balancingis shown in Figure4.
It is similar to thesenderinitiated diffusion techniqueoutlinedby
Willebeek-LeMairandReeves[13].

Oncethesourcesanddestinationsaredetermined,thefourthand
final stageof load balancingtakesplace. During this stage,indi-
vidual tasksare selectedfor redistribution. In the context sensi-
tive migrationstrategy outlinedabove, therearea numberof small
screen-spaceregionsthatfall on theborderbetweenthesourceand
destinationnodes.Duringtaskselection,thebestregionfor redistri-
bution mustbeselected.In thecontext of therenderingalgorithms
discussedin this paper, theevaluationshouldbebasedon theload
disparitypresentin thesystem,the loadevaluationin eachregion,
andtheamountof overlappresentin eachregion.

After loadbalancinghastakenplace,therenderingsystemcon-
tinuesexecutingthestandardsort-firstor sort-middlepipeline. At
the endof the pipeline,pixels that werecomputedaway from the
default nodemustbe transmittedacrossthe network. The costof
thepixel redistribution is very high andmustbe incorporatedinto
theprofitability determination.If a largenumberof pixelsmustbe
transmittedat theendof thepipeline,thesystemmayachievebetter
performancein anunbalancedstate.

Figure4: Theimageto theleft depictsthespatialfragmentationthat
occurswith asimpleloadbalancingalgorithm.Theimageto theleft
shows thata context sensitive algorithmcanreducefragmentation
at theaddedcostof slower balancingperformance.

Figure5: The left figureshows a sort-firstpipeline. Theright fig-
uredepictsa sort-middlepipeline. In this figure, 	 representsthe
graphicsprocessingstage. 	�� � representsthepre-transformation
stageneededin sort-firstpipelines. ! representsthe rasterization
stage.

4.3.3 Impact of Sor ting on Load Balancing

The is an importantrelationshipbetweenload balancingand the
sortingalgorithmthatdependsuponwherein thepipelineeachop-
erationtakesplace.As shown in Figure5, loadevaluationoccursat
thevery endof thepipeline. Theremainingstagesof loadbalanc-
ing occurat the startof the pipeline. Recall thatastaskselection
occurs,screen-spaceregionshave beenreassignedto differentma-
chinesto balancetheload.

However, no geometrydatagetsreassigneduntil the primitive
distributionstage.Thiscreatesa slightdelayin theeffectivenessof
theloadbalancingoperation.Thedelayoccursbetweentaskselec-
tion andprimitivedistribution. As Figure5 shows,thelengthof this
delaydependson thesortingalgorithm. Sort-firstalgorithmsmust
wait for thepre-transformationstageto complete,while sort-middle
algorithmsmust wait for the entiregeometryprocessingstageto
complete.Becausesort-firstalgorithmsdistributeprimitivesearlier
in thepipeline,thebenefitof loadbalancingis felt earlier.

4.4 Comm unication and Network Topology

Whendesigninga PCrenderingcluster, therearea numberof op-
tions concerningnetwork infrastructureand the overall topology.
Optionsfor theinfrastructureincludeMyranet,Ethernet,andGiga-
bit Ethernet.Network protocolsneedto be chosenfor communi-
cation. Theseprotocolsmay or may not provide reliabledelivery
andor qualityof serviceguarantees.Network topologyis a critical
issueaswell. Shouldthenetwork be a broadcastsystem?Should
it provide point-to-pointcommunication?What parametersof the
network aremostcritical to thecluster’s performance?

4.4.1 Point-to-P oint Network

Due to the natureof both task and pixel redistribution, it seems
that a point-to-pointnetwork would be mostappropriate.This is
becauseboth tasksandpixels aresentfrom a specificsourceto a
specificdestination.Most communicationwill thereforebe in the
form of point-to-pointmessages.

However, incorporatingbroadcastcapabilitiesmight prove use-
ful in synchronizingall of thenodesin theclusterat critical points
in the renderingpipeline. Reliabledelivery alsoseemsimportant
for maintaininga high performancelevel. Lost or missingdata
would likely causeproblemsandslow down therenderingprocess.

4.4.2 Appl ying the LogGP Model to a Rendering Cluster

To geta betterunderstandingof thenetwork requirementsneeded
for aclusterrenderingsystem,wecanusetheLogGPmodelof dis-
tributednetwork performancedescribedin Section2.4. However,
beforewe canutilize themodel,it is importantto analyzetheren-
deringsystem’s properties.

A PC renderingclustercapableof interactive frame rateswill
bea highly synchronizedsystemsinceinteractive applicationsare
oftenrequiredto rendermultipleframespersecond.In addition,the
renderingsystemin thispaperwill requiremultiplesynchronization
pointsper frame. For example,thesystemmustsynchronizeafter
redistributing primitives,after redistributing load balancingtasks,
andwhenfinishedrenderingthefinal pixel data.

This high degreeof synchronizationwill weigh heavily on the
network design. Experimentsperformedat the University of Cal-
ifornia at Berkeley have shown that synchronizedapplicationsare
likely to be dependenton total roundtrip times[7]. This implies
thata renderingclusterwill besensitive to � , thenetwork medium
latency. Therefore,ahigh-speednetwork will becritical to theclus-
ter’sperformance.

For both sort-first and sort-middlesystems,the redistribution
stageof thepipelinewill likely useshortmessagesto performthe
redistribution of tasks.This is becausethe itemsbeingdistributed
areindividual primitives. This implies that theshortmessagegap
time, � , is important.Similarly, thebulk transfergap, 	 , will beim-
portantat theendof thepipelinebecausebulk transferswill likely
be usedto transferraw pixel dataacrossthe network. Pixel data
will needto be sentbackto the appropriatehostsafter they have
beencomputedelsewhereto achieve loadbalancing.This implies
that the requiredbandwidthwill be proportionalto the amountof
dataredistribution (due to both both sorting and load balancing)
expectedfrom therenderingclusterduringtypicaloperation.

As the displaysupportedby the clusterscalesup to higherand
higherresolutions,thebulk transfergap, 	 , will becomemoreim-
portantasthenumberof raw pixels redistributedover thenetwork
increases.The numberof pixels to be redistributed increasesfor
bothregularandroughoverlappingdisplaysbecausehigherresolu-
tion displaysusemoreprojectors.This resultsin a larger number
of pixelsin overlapregions.

The analysisabove might imply that � , � , and 	 arethe most
importantfactorsin network design. Indeed,the network should

be designedto optimizeall threefactors. However, the Berkeley
study" showedthatabove all else,applicationsaremostsensitive to
network overhead,� . Evenlightly communicatingapplicationswill
exhibit afactorof 3-5slowdown onsystemswith network overhead
valuestypical of currentLAN communicationstacks[7]. Highly
communicatingapplicationssuchastherenderingclusterwill show
far worseeffects.

In orderto limit network overhead,� , asmuchaspossible,the
renderingclustershouldbedesignedwith a messagingsystemthat
allows applicationsto bypassthe LAN communicationstack. For
example,MPI, or MessagePassingInterface,allows applications
to sendmessagesacrossa local areanetwork without accruingthe
overheadof thecommunicationstack[9].

Improvementsto both gap, � , and network overhead, � , will
provide improvementsto clusterperformance.TheBerkeley stud-
ies showed that almostall applicationsshow a linear dependence
on both parameters.This implies that reductionof network over-
headandgapwill resultin a similar improvementin overall cluster
performance.The samestudiesshowed that improvementsdueto
lower bulk transfergap, 	 , andnetwork mediumlatency, � , were
moredifficult to quantify. They showedthatimprovementsfrom re-
duced	 and � aremorecloselyrelatedto theapplication’s design.

5 Cluster Design Suggestions

After exploring theclusterdesignfactorspresentedin Section4, a
few guidelinesbecomeclearthatshouldbefollowedwhendesign-
ing a distributed PC rendercluster for roughly alignedprojector
displays. First, a hybrid renderingapproachshouldbe used. The
hybridalgorithmshouldcombinesort-firstor sort-middlefor prim-
itive redistribution with pixel redistribution at the endof the ren-
deringpipeline. Thesort-firstor sort-middlesegmentof thealgo-
rithm facilitatesdistributionof raw or displayprimitivesto thehost
responsiblefor renderingthe appropriateregion of screenspace.
Thepixel redistribution segmentof thealgorithmfacilitatesredis-
tribution of the pixel databack to the host that is attachedto the
appropriateprojectorafterloadbalancing.Choosingsort-firstover
sort-middlewill make integrating standardgraphicshardware an
easierprocess.Figure5 illustratesthetwo distributionstagesin the
hybridpipeline.

Second,loadbalancingshouldbeimplementedif typicalusesof
theclusterwill creategrosslyunevenworkloadssuchasgeometry-
boundbottlenecks.Althoughframe-to-framecoherencecanbeex-
ploited to improve load balancing,the costassociatedwith trans-
ferring tasksandpixelsis still very high. Careshouldbetakenthat
thebenefitsof loadbalancingoutweighthecostandthatit actually
improvesperformance.

The third guidelineis that whendesigningthe communication
portionsof the cluster, messagepassinglibraries that bypassthe
typical LAN communicationstackshouldbeusedto minimizethe
costof network overhead.Likewise,networksshouldbedesigned
to minimizebothgapvalues.Thewill allow primitiveandpixel re-
distribution to performathigherrates.It is alsoimportantto recog-
nizethatthehighdegreeof synchronizationinherentin loadbalanc-
ing andtherenderingpipelinearelikely to make network latency a
very importantparameterto systemperformance.

6 System Scalability

Oneof thelargestbenefitsto usingaPCclusterto renderfor multi-
projectordisplaysis therelatively cheapcostof increasingthesys-
tem’s scale.If therenderingwereperformedon a largesupercom-
puter, scalingup the systemwould requirea new machinewith a
large financialcost. Using a PC clusterto renderthe imageryal-
lows thesystemto scaleup by addinganadditionalPCto theclus-

ter. This allows new projectorsto be addedto the displayat low
cost.However, it is importantto understandhow scalingthesystem
affectsthesystem’s performance.

Theareaimpactedmostheavily by anincreasein thenumberof
hostsis thenetwork. An increasein hoststranslatesinto increased
network traffic. More taskswill bedistributedandmorepixel data
will be transferredat the endof the pipeline. This increasedtraf-
fic will increasebandwidthusage.The othernetwork parameters
(� , 	 , � , and �) will not bedirectly affected.It is importantto in-
surethat the underlyingcommunicationmediumsuppliesenough
bandwidthfor thescaleof thesystem.

The load balancingalgorithmwill also be affected. Processor
loadevaluationoccursindependentlyat eachhostandremainsthe
same.Likewise,taskselectionis independentto scaleandremains
thesame.This is becausetaskselectionin the renderclustercon-
text dependsonly on spatialneighbors.However, load balancing
profitability determinationandtaskmigrationbecomemorecom-
plicatedasthenumberof inputsinto thedecisionsincreases.

Therenderingalgorithmshouldremainrelatively immuneto the
scaleof therenderingsystem.Themajorparametersto therender-
ing algorithm’sperformancerelateto thegeometrybeingrendered.
This includesthe numberof primitivesand the tessellationratio.
However, the one areathat is affectedby additionalhostsis the
overlapfactor. As morehostsareaddedto thesystem,thescreen-
spaceregionsbecomesmallerandsmallerwith respectto thegeom-
etry if all otherfactorssuchasgeometryandfield-of-view remain
constant.This meansthat the effective sizeof primitives in pixel
spacewill be largerandthey will bemorelikely to fall on overlap
regions.Increasingtheoverlapfactorresultsin duplicationof work
at variousnodes. This trendtowardsan increasingoverlap factor
canbepartiallyovercomeby mergingall screen-spaceregionsona
singlehostinto oneregion. This will reduceoverlapfactorswithin
eachhost to the minimum possible. However, the overlap factor
will still increaseas the scaleof the systemincreases,albeit at a
slower rate.

7 Conc lusion

Designinga renderingclusterthatprovidesinteractive graphicsfor
multi-projectordisplaysis a complicatedtask.Therearea number
of designdecisionsthatmustbemadewhenbuilding suchacluster.
This paperhaspresenteda few of theseissuesandexploredmany
of theoptionsfacedduringthedesignof a renderingcluster.

Onemajor issueaddressedis thesortingprocessneededwithin
therenderingpipeline.Dependingon thefinal clusterarchitecture,
eithersort-firstor sort-middlealgorithmsmaybeappropriate.An-
othermajor issueis loadbalancing.This paperdiscusseda context
sensitiveloadbalancingapproachandprovidedanoverview onhow
thetechniquecouldbeusedin conjunctionwith aparallelrendering
algorithmsuchassort-firstor sort-middle.Thelastmajorissuecov-
eredin thispaperwasnetwork performance.Thispaperprovideda
descriptionof how the redistribution requirementsassociatedwith
bothsortingandloadbalancingimpactnetwork performance.

The renderingalgorithm’s sortingprocess,load balancing,and
network communicationareall importantfactorsthatweighheav-
ily on the system’s overall performance.When designinga PC-
basedrenderingcluster, they mustall beexploredduringthedesign
process.

References

[1] Gary BishopandGreg Welch. Working in the Office of the
“Real SoonNow”. IEEE ComputerGraphicsand Applica-
tions, 20(4):76–78,2000.

[2] CarolinaCruz-Neira,Daniel J. Sandin,andThomasA. De-
Fanti.Surround-ScreenProjection-BasedVirtualReality:The
DesignandImplementationof theCAVE. ComputerGraph-
ics, 27(AnnualConferenceSeries):135–142,1993.

[3] David Gotz. The Office of the FutureDisplayWall System.
UNC-CHComp238ClassReport.

[4] Mark Hereld, Ivan R. Judson,and Rick L. Stevens. In-
troduction to Building Projection-basedTiled Display Sys-
tems. IEEE ComputerGraphicsandApplications, 20(4):22–
28,2000.

[5] Greg Humphreys and Pat Hanrahan. A Distributed Graph-
ics System for Large Tiled Displays. In IEEE Vi-
sualization 1999, San Fransisco, October 1999. cite-
seer.nj.nec.com/241717.html.

[6] Kai Li, Han Chen, Yuqun Chen, DouglasW. Clark, Perry
Cook, StefanosDamianakis,Georg Essl,Adam Finkelstein,
ThomasFunkhouser, Timothy Housel,Allison Klein, Zhiyan
Liu, Emil Praun,RudrajitSamanta,BenShedd,JaswinderPal
Singh,GeorgeTzanetakis,andJiannanZheng. Building and
Using A ScalableDisplay Wall System. IEEE Computer
GraphicsandApplications, 20(4):29–37,2000.

[7] RichardP. Martin, Amin M. Vahdat,David E. Culler, and
ThomasE. Anderson. Effects of CommunicationLatency,
Overhead,andBandwidthin a ClusterArchitecture. In Pro-
ceedingsof the 24th Annual International Symposiumon
ComputerArchitecture, June1997.

[8] Steven Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs.A SortingClassificationof ParallelRendering.IEEE
ComputerGraphicsandApplications, 14(4):23–32,1994.

[9] MPI. TheMPI-2.0Standard.http://www.mpi-forum.org/.

[10] RameshRaskar. Immersive PlanarDisplay using Roughly
Aligned Projectors.In IEEE VR2000, New Brunswich,NJ,
USA, March2000.

[11] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser,
Kai Li, and Jaswinder Pal Singh. Load Balancing
for Multi-Projector Rendering Systems. In ACM SIG-
GRAPH/EurographicsWorkshoponGraphicsHardware, Au-
gust1999.

[12] DanielR. Schikore,RichardA. Fischer, RandallFrank,Ross
Gaunt,JohnHobson,andBrad Whitlock. High-Resolution
MultiprojectorDisplayWalls. IEEE ComputerGraphicsand
Applications, 20(4):38–44,2000.

[13] Marc H. Willebeek-LeMairandAnthony P. Reeves. Strate-
giesfor DynamicLoadBalancingonHighly ParallelComput-
ers. IEEE Transactionson Parallel andDistributedSystems,
4(9):979–993,1993.

