
The Design and Implementation of PixelFlex: A Reconfigurable
Multi-Projector Display System

David Gotz
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

In this technical report, we present a detailed overview
of PixelFlex, a multi-projector display system that com-
bines multiple roughly aligned projectors into a unified high-
resolution display. We describe the current prototype, the
automated calibration process, and two rendering algorithms
that support interactive applications. The first rendering al-
gorithm is a one-pass technique that assumes little or no op-
tical projector distortions. It corrects for the linear shear
distortions (keystoning) that result from casual projector
alignment and non-orthonormal projection. The second ren-
dering algorithm is a two-pass technique that corrects for
both linear projection distortions and non-linear distortions
introduced by non-planar display surfaces and projector lens
distortion.

1 Introduction

Over the last few years, computers have become more pow-
erful by almost all measurements. Processor speeds have
increased, hard drive sizes have gone up, and memory has
become cheaper. However, typical computer displays have
not increased in resolution at the same speed. To address
this issue, researchers have explored the possibility of com-
bining multiple standard resolution projectors into a single
system to increase the total display resolution. Such multi-
projector display systems are currently under development
at a number of research labs. Examples of these systems are
the CAVE [1], the Scalable Display Wall [5], the InfoMural
[3], and a number of other video wall and dome products
[9, 10, 6].

However, each of the display systems listed above requires
precise geometric alignment of each projector. At the Uni-
versity of North Carolina at Chapel Hill, researchers have
built a prototype of a unique display system known as Pix-
elFlex [11]. This system is capable of rendering blended
imagery across multiple, roughly aligned projectors at inter-
active frame rates.

2 PixelFlex

The PixelFlex display system combines multiple projec-
tors to form a single unified display device. Unlike many
other multi-projector systems, each projector can be casu-
ally aligned with arbitrary overlap regions between projec-
tors. Figure 2 shows such an configuration. To account for
the arbitrary configuration, PixelFlex uses a computer con-
trolled camera to perform closed-loop calibration. During
this calibration stage, the system registers each of the pro-
jectors into a common coordinate frame. The result of this
calibration stage is then used during the rendering process.

Figure 1: A PixelFlex user interacts with an X Windows
desktop.

Figure 2: Eight projectors arranged with arbitrary overlap.

PixelFlex provides a far more flexible display device than
most other multi-projector systems. It is capable of provid-
ing variable pixel density, switching between multiple saved
configurations, and a performing relatively quick calibration
of new configurations.

This report will provide a detailed description of each of
four major components that make up PixelFlex :

• Hardware Prototype: The specific hardware that
makes up the prototype and how it is arranged in our
lab.

• System Control Panel: The software system that
allows users to control the hardware as well as run the
calibration process and display system.

• Calibration Process: The software responsible for
calibrating PixelFlex. The result of this process is used
while rendering.



Figure 3: The PixelFlex projector array.

• Rendering Algorithms: Two algorithms designed to
render for PixelFlex. The two algorithms demonstrate
the tradeoffs between speed and accuracy.

Following the description of these four components, this
report will present a brief conclusion.

3 Hardware Prototype

We have installed a prototype of PixelFlex in a conference
room. We built the prototype from standard off-the-shelf
equipment. It uses eight projector/pan-tilt unit (PTU) rigs,
each containing a Proxima DP6850 LCD projector. These
projectors can display at up to 1024×768 resolution and are
rated at 1500 ANSI lumens. The Proxima projectors allow
computer control of zoom, focus, color balance, brightness
and contrast. These controls are accessed via a serial (RS-
232) communication port.

In front of each projector is a Directed Perception pan/tilt
unit (PTU). The PTUs are also computer controlled via RS-
232 ports. The PTU provides two degrees of freedom by
allowing the computer to set both the pan angle and tilt
angle. We have attached a front surface mirror to each PTU.
By controlling the pan and tilt parameters, the system can
point the mirror in any direction. The mirror is used to aim
the projector’s image onto the display surface. The mirror
must be a front-surface mirror to prevent inter-reflections
that soften the focus of the displayed image. A photograph
of a projector/PTU rig can be seen in the inset of Figure 3.

The projectors are arranged for front-projection. This
means that they are placed on the same side of the display
surface as the viewer. As a result, the conference room did
not need any special structural modifications. We simply
attached the eight projector/PTU rigs to the ceiling in a
four-by-two grid. While not necessary, we opted to make the
prototype a little less obtrusive by raising a few ceiling tiles
by approximately two feet. This resulted in a small alcove
in the ceiling in which we placed the array of projectors. See
Figure 3 for a photograph of the projector array.

In order to control the sixteen RS-232 devices, we use a
Digi International DigiPort 32 serial port server that pro-
vides IP based access to 32 serial ports. The DigiPort 32
server is accessed over an Ethernet-based network from a
Windows 2000-based personal computer (PC). The PC also
contains a Matrox Meteor II frame grabber used to capture
images from a standard NTSC camera.

In addition to the PC, which serves as the control center
for the system, we currently use an SGI Reality Monster
machine for all rendering tasks. We use two independent
IR2 graphics pipes where each pipe provides four channels
for rendering.

This prototype allows us to explore many of the issues re-
lated to multi-projector displays. It allows us to use existing
surfaces (such as the conference room walls) for the display
surface. It also allows us to research both geometric and
photometric calibration issues.

4 System Control Panel

The control panel serves as the nerve center of PixelFlex.
The control panel software resides on the Windows 2000 PC
and controls the projectors and PTUs. It also allows users
to save preset configurations for later use. In addition, it
allows users to launch the various calibration programs.

The control panel lets users control a number of projector
settings. Zoom, focus, brightness, contrast, red and green
color balance, power, picture mute, and input can all be
selected via standard radio buttons and scroll numbers. The
same interface tools allow users to change pan and tilt angles
for the mirrors. Figure 4 shows a screen shot from the control
panel graphical user interface.

After a user adjusts the system into a new configuration,
the settings can be saved to disk. The user can then restore
the system to the saved settings by selecting the saved config-
uration from a menu and loading the values from disk. This
allows the user to store multiple configurations and quickly
switch between them.

The control panel also allows users to launch two geo-
metric calibration programs. The first program is the affine
matrix calculation procedure. The second is the structured
light calibration application. These two programs will be
discussed in more detail in Section 5.

5 Calibration Process

There are two major portions of the calibration process. The
first part, geometric registration, calculates a mapping to a
global coordinate system for each projector. The second
part, photometric calibration, measures some optical charac-
teristics of each projector.

5.1 Geometric Registration

The first step in calibrating the system is geometric registra-
tion. This portion of the system uses a computer-controlled
camera to view each projector’s display area and calculate a
common coordinate frame for the unified display. The first
task is to calibrate the camera. Next, we determine a global
coordinate system and a mapping from camera space to this
global space. Then, the camera is used to observe structured
light patterns emitted by each projector. After building a
mesh that describes the relationships between each projec-
tor and the global coordinate system, the system processes
the mesh to compute a number of properties such as overlap
regions and the effective display area.

5.1.1 Camera Calibration

An ideal lens would not distort light as it passed through
the lens surface. Unfortunately, no lens is ideal. When mak-
ing accurate measurements with a camera, it is important



Figure 4: A screen shot from the system control panel.

to correct for any lens distortions. Typical camera calibra-
tion procedures approximate lens distortion by characteriz-
ing two main types of distortion: (1) radial distortion and
(2) tangential distortion.

Radial distortion refers to the warping of light as a func-
tion of the distance from the optical center of the lens. Ra-
dial distortion is often referred to as ”barrel distortion” or
”pin-cushion distortion.” We use three parameters to char-
acterize the radial distortion.

In actuality, the radial distortion is not centered directly
upon the camera’s optical center. Tangential distortion
refers to the location of the radial center point with respect
to the optical center. Two parameters are used to charac-
terize the tangential distortion.

In order to calibrate our digital camera, we have written
an application that uses a calibration routine developed at
Intel’s Image Lab as part of OpenCV [4]. The application
calculates the five distortion parameters by examining pic-
tures of a checkerboard. While the unknowns can be com-
puted by analyzing a single picture, the results may be inac-
curate due to noise and limited numerical precision. Better
values for the parameters can be obtained by using multiple
images and performing an optimization on the results. We
typically use approximately 15 photographs of the checker-
board pattern. In addition to the distortion parameters,
the calibration routine also determines all relevant intrinsic
camera parameters such as focal length and optical center.

5.1.2 Mapping Camera Space to Global Space

Once the intrinsic parameters are known, the system must
determine the camera’s extrinsic parameters. These parame-
ters describe the location and orientation of the camera with
respect to the display surface. Because the display surface

Figure 5: The four fiducials used to define the global coor-
dinate system are circled in red.

in this prototype is restricted to lying in a plane, a simple
3x3 matrix, C, can be used to encapsulate the extrinsic pa-
rameters. Matrix C is known as a collineation matrix and
is defined up to scale. This means that there are just eight
unknowns that must be solved.

In order to solve for these unknowns, we must have six-
teen values to place into a linear system that defines the
collineation matrix. The sixteen values refer to eight 2-
dimensional coordinates. Four of these coordinates come
from known points on the plane that contains the dis-
play surface: (x′

i, y
′
i). These four points have been physi-

cally measured before the calibration process begins and are
marked on the display surface with four fiducials within the
field of view of the camera. Figure 5 shows our display sur-
face and the four fiducials.

To find the remaining four 2-dimensional coordinates, a
photograph of the fiducials is taken with the camera. This



image is then undistorted to remove both radial and tan-
gential distortion. The camera pixel coordinates for each of
the four fiducials (xi, yi) are recorded and used to calculate
both F (Equation 1) and W (Equation 3). We then solve the
linear system shown in Equation 4 for a. The solution for a
determines the collineation matrix C as shown in Equation
5.

F =



x1 y1 1 0 0 0 −x′
1x1 −x′

1y1

0 0 0 x1 y1 1 −y′
1x1 −y′

1y1

x2 y2 2 0 0 0 −x′
2x2 −x′

2y2

0 0 0 x2 y2 2 −y′
2x2 −y′

2y2

x3 y3 3 0 0 0 −x′
3x3 −x′

3y3

0 0 0 x3 y3 3 −y′
3x3 −y′

3y3

x4 y4 4 0 0 0 −x′
4x4 −x′

4y4

0 0 0 x4 y4 4 −y′
4x4 −y′

4y4


(1)

a =
[

a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2

]T

(2)

W =
[

x′
1 y′

1 x′
2 y′

2 x′
3 y′

3 x′
4 y′

4

]T
(3)

F · a = W (4)

C =

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 1

]
(5)

[
xdisplay ∗ w
ydisplay ∗ w

w

]
= C

[
xcamera

ycamera

1

]
(6)

The collineation matrix C is used to transform 2D cam-
era pixel coordinates into 2D display surface coordinates as
shown in Equation 6. The display-surface coordinates, de-
fined by the four fiducials, serve as the common coordinate
frame for the PixelFlex system.

5.1.3 Structured Light Registration

Once the camera has been fully calibrated, the system begins
the structured light registration algorithm. This part of the
calibration process defines a mapping for each projector’s
pixel space to the global coordinate system. This mapping
accounts for projector lens distortion.

The structured light algorithm works by illuminating a
grid of features on each projector. In our system, we are
using a ten by ten grid of Gaussian blobs as our features.
The blobs are circles whose intensity is defined by a Gaussian
distribution. They are fully illuminated in the center and fall
of to black as the radius increases. This blob structure allows
the algorithm to determine the blob center’s location with
sub-pixel accuracy. This is important because the camera
has limited resolution and any error in finding the center
of the blobs will result in geometric discontinuities along
the projector boundaries in any rendered imagery. Figure 6
shows the intensity distribution associated with a Gaussian
blob.

Each projector is calibrated independently. First, the sys-
tem illuminates all 100 features in the grid and the camera
captures an image. Next, the system corrects for radial and
tangential distortion in the captured image. Once the dis-
tortion has been removed, the system applies a number of

Figure 6: A Gaussian blob.

standard computer vision techniques to determine the cen-
ter of each blob in image pixel coordinates. This is done to
sub-pixel accuracy by calculating a weighted center based on
the spatial intensity distribution of the blobs. For each blob,
the center location is transformed to the common coordinate
system by applying the collineation matrix.

At this point, the system has located 100 features in cam-
era space and has transformed these locations into the global
coordinate system. However, to complete the mapping be-
tween pixel space and global space, the system needs to know
the projector’s pixel coordinate for each blob. To do this,
the system uses a binary coded structured light algorithm
to identify each blob feature. Each blob is given a unique
identification number from 1 to 100. These numbers can be
represented with seven bits. The display system first illumi-
nates all features whose least significant bit is 1. Features
whose least significant bit is 0 are left dark. An image is
taken with the camera, corrected for distortion, and ana-
lyzed to determine which features were illuminated. The
same process is repeated six more times, once for each bit
needed to represent the identification numbers.

After analyzing all seven binary coded images, the system
knows the identification number for each blob. This identi-
fication number allows the system to look up the projector’s
pixel coordinate for the blob and match this coordinate with
the corresponding display surface coordinate.

This process is repeated for every projector in the system.
At the completion of this process, the system has 100 sam-
ples per projector in the mapping from projector pixels to
the global display coordinate system. To compute the entire
mapping, the system can interpolate between the measured
samples. However, the system does not perform this inter-
polation because it would result in a huge mapping function
with one sample per pixel. Instead, the system builds a
much smaller mesh that encapsulates the registration data.
This mesh allows us to utilize high-speed graphics hardware
to perform the interpolation at runtime.

Because the system knows the location of the each sam-
ple in projector pixel space, a mesh can be calculated for
each projector by finding the Delaunay triangulation of the



Figure 7: (a) the Effective Display Area (EDA); (b) the EDA
is divided into four texture patches; (c) A projector contains
three texture patches; (d) Re-triangulation with normalized
texture coordinate.

sample points. We triangulate the data because computer
graphics hardware provides extremely fast linear interpola-
tion for triangles. While linear interpolation is not the most
accurate method of interpolation, we have found through
experimentation that a sampling density of 100 samples per
projector provides an accurate piecewise-linear approxima-
tion with few visual artifacts in the final PixelFlex image
surface. These meshes are then sent to the mesh processing
algorithm.

5.1.4 Processing the Registration Mesh

The structured light registration process generates a sub-
sampled mapping between projector pixels and world coor-
dinates. We must process this initial mapping into the form
needed by the two-pass rendering algorithm. This section
describes the mesh processing stage while Section 6 discusses
the rendering algorithms themselves.

We would like to use the registration data as texture map
coordinates into the frame buffer. However, due to a hard-
ware limit on maximum texture size, we have to break down
the complete mapping into smaller texture patches, as shown
in Figure 7.

Because the projectors are casually aligned, the outer
boundary of the PixelFlex display is not guaranteed to be
rectangular. Because displays are typically rectangular, we
determine a rectangular area from our registration data by
computing the maximum inscribed area on the display sur-
face. To calculate this area, we merge the projection areas of
all projectors to form a single unified display area. Starting
with the centroid of this union, we grow a rectangular area
until all four of its sides touch the boundary.

The maximum inscribed rectangular area defines the Ef-
fective Display Area (EDA) on the projection screen, shown
in Figure 7 (a).

Based on the size of the EDA and the average pixel den-
sity, we divide the EDA into small texture patches (shown
in Figure 7 (b)), each no bigger than 1024 x 1024 to uti-
lize our system’s texture mapping hardware. Other systems
may have different maximum texture sizes. We need to fur-
ther adjust the texture coordinates and triangulation in each
patch since texture coordinates of a given graphical primi-
tive must reference the same texture. For each combination

Figure 8: The shape of a typical gamma curve is outlined in
red. The black line depicts the desired linear response.

of texture patch (T) and projector(P)’s projection area, we
perform a boolean AND operation between them. The in-
tersection is projector space P’s contribution to texture T. A
projector may contain multiple texture patches; and a tex-
ture patch may be used in several projectors, as shown in
Figure 7 (c).

The intersections are defined by points on the boundary.
To compensate for various distortions, we fill the interior
with original feature points from the registration process.
Finally, we feed the points in the intersection to a Delaunay
triangulation [2] program to create a 2D mesh in the pro-
jector’s screen space, shown in Figure 7 (d). The texture
coordinates are translated and normalized between 0 and 1
within each patch.

5.2 Photometric Calibration

Photometric calibration is an integral portion of PixelFlex.
The somewhat arbitrary placement of projectors in the sys-
tem creates a number of overlap regions which, if not ac-
counted for, will create obvious seams in the final display
even if the geometric registration is perfect.

The first step in photometric calibration is determining
an alpha mask for each projector. An alpha mask is used
to attenuate brightness on a pixel-by-pixel basis. For each
area on the display surface, the total alpha value for all over-
lapping pixels must equal one. As a result, alpha values for
pixels that do not overlap are set to one. For all other pixels,
the alpha value is distributed across all overlapping pixels.
The alpha value for overlapping pixels is calculated by look-
ing at the number of overlapping pixels, the pixel’s distance
from the edge of the projector’s boundary, and the pixel den-
sity for that projector. The distance from the edge metric
is included to allow smooth transitions between projectors.
Pixel density is used because projectors with a higher pixel
density are capable of displaying more accurate imagery and
they should be given priority. The alpha value Am(u, v) for
projector m’s pixel (u, v) is computed using the equation:

Am(u, v) =
am(m, u, v)pn

m∑
i
ai(m, u, v)pn

i

(7)

where pi is the pixel density for projector i and n is an
attenuation factor supplied by the user.

The alpha map method of blending intensity across over-
lap regions assumes that projectors exhibit a linear intensity



response. Unfortunately, this is usually not the case. Each
projector has a unique gamma curve that describes how the
projector maps the value contained in a video signal into an
intensity of light. This gamma curve is normally expressed as
a function of an integral value between zero and 255. Figure
8 shows a common shape for a gamma curve. One result of
the gamma curve is that the actual luminance at intensity
value A is not necessarily half the luminance at intensity
value (2 × A). This non-linearity breaks the assumptions
made in the alpha map blending algorithm. To solve this
problem, we must linearize the gamma curve.

For each projector, we use a spectral radiometer to take
measurements of the intensity value for all 256 discreet in-
put values in the video signal. Th data from these measure-
ments provides a mapping between specified intensity and
the actual light intensity emitted by the projector. We then
calculate an inverse lookup table (LUT) that allows us to
quickly linearize the gamma response. We use this LUT to
map an idealized linear value into the actual value used by
the projector. The result is that an intensity value of (2×A)
now has twice the luminance of an intensity value of A. Each
projector has a unique LUT that is used during the render-
ing process to correct for non-linear projector response. This
LUT is called the gamma correction LUT.

6 Rendering Algorithms

The rendering portion of the PixelFlex system is the front-
end portion of the system that is invoked by the users of the
system. We have implemented two rendering applications:
(1) a two-pass X Windows desktop and (2) a one-pass 3D
viewer.

The two-pass algorithm corrects for all distortions
(keystoning, projector lens distortion, etc.) present in the
system with a piece-wise linear approximation. However, we
have found through our experiments that when operating
near the middle of a projector’s zoom range, non-linear dis-
tortions such as radial distortion are minimal. As a result,
a one-pass technique that corrects only for linear distortions
such as keystoning can be used when the projectors are set
in the minimal distortion range and the display surface is
planar.

6.1 Two-Pass X Windows Desktop

The two-pass X Windows Desktop application is based on
VNC [8], an open source application that allows users to run
a remote X server and send the desktop across a network to
their local machines. We used the source code for VNC as a
starting point for our renderer and added PixelFlex -specific
code as needed.

When started, the first task the rendering module per-
forms is to load the data collected during the calibration
portions of the system. The LUT data from the photometric
calibration is loaded into the hardware lookup tables found
on our SGI machine.

Once the LUTs are loaded, the system is ready to begin
rendering. A high-resolution desktop is rendered to an off-
screen buffer. This allows a standard X Windows server and
window manager to be used. The X Windows server receives
all window commands in the normal fashion and the results
are rendered into a typical rectangular frame buffer. The
only differences are that this frame buffer has an extremely
high resolution and it is not assigned to any display device.
Instead it is a virtual buffer that resides in main memory.

Figure 9: A PixelFlex user examines visualization data.

Figure 10: Two users look at the microprint on a twenty
dollar bill.

The next step is to divide the virtual buffer into smaller
textures that fit within the maximum limits defined by the
OpenGL library. We call these texture tiles. In our current
prototype, these are 1024 × 1024 texture tiles. These tiles
are then sent to the specialized rendering procedure.

In this portion of the rendering module, each projector
is rendered individually. First, the texture tiles are brought
in from the virtual frame buffer. Next, the triangle mesh is
rendered, one texture tile portion at a time. These triangles
are texture mapped using the appropriate texture tile. The
texture mapping performs a piecewise linear warp of the
virtual frame buffer to the global display coordinate system.

The next step is to apply the alpha mask calculated in the
mesh processing stage. Each projector has a unique alpha
mask. The alpha mask contains a constant between 0 and
1 for each pixel in the frame buffer. These constants are
multiplied by the color information. This results in smooth
photometric transitions between projectors in the overlap
regions.

As the SGI rendering pipeline sends out the data to the



Figure 11: A high resolution inset is used to allow more
accurate rendering of the microprint on a twenty dollar bill.

projectors, it applies the hardware LUTs to the frame buffer.
Because of the LUT, each pixel is sent to the projector af-
ter it has undergone gamma correction. The result is a fully
seamless high-resolution display. Figures 9 and 10 show pho-
tographs of the system in action.

Due to the unique flexibility allowed by the PixelFlex de-
sign, the display system is capable of providing high reso-
lution insets. This is accomplished by directing the images
from two projector at the same area on the display surface.
One projector should be zoomed such that it has a higher
pixel density than the other projector. Figure 11 demon-
strates such a configuration.

6.2 One-Pass 3D Viewer

The one-pass 3D viewer is an OpenGL-based application
that takes over the entire display and is capable of display-
ing 3D models with only one pass through the rendering
pipeline. The 3D viewer uses the rendering technique de-
scribed by Raskar [7].

The algorithm requires four points per projector in or-
der to compute the collineation matrices for each projector.
During the structured light registration stage of calibration,
the system records 100 features arranged in a ten by ten
grid. The 3D viewer uses the four corner features from the
grid to compute the collineation matrices.

The matrices are then appended to the appropriate
OpenGL matrix stack for each projector and rendering pro-
ceeds as normal. Blending is accomplished by rendering a
polygon at the near clipping plane using the alpha mask
computed during the photometric calibration stage.

This one-pass rendering method achieves geometric reg-
istration at no added cost by folding the linear geometric
correction warp into the matrix stack. As a result, the com-
plex process of registration mesh generation and texture tile
management is eliminated. Furthermore, the one-pass tech-
nique does not introduce the texturing system artifacts of
the two-pass rendering process. Figures 12 and 13 show the
3D viewer application.

7 Conclusion

In this technical report, we have presented the design and
implementation details for PixelFlex, a reconfigurable multi-

Figure 12: Two users examine parts of a power plant model.

Figure 13: PixelFlex in a stacked configuration where four
of the projectors almost entirely overlap the other four pro-
jectors. This demonstrates that the algorithm is capable of
supporting stereo display configurations in the future. The
inset shows the rough projector alignment.

projector display system. We have provided details about
our current eight-projector prototype and the infrastructure
needed by the prototype.

We have also detailed the calibration procedure and de-
scribed how the system uses a computer controlled camera to
automate the process. Finally, we have presented two ren-
dering algorithms. One technique is a one-pass algorithm
that corrects linear distortions and works well for planar
display surfaces and near-linear projector optics. The sec-
ond is a two-pass technique capable of correcting for both
linear and non-linear distortions, as well as rendering on
non-planar display surfaces.

Together, these features make PixelFlex a unique display
system capable of easy reconfiguration, automatic calibra-
tion, and real-time interactive rendering.

8 Acknowledgments

This research is funded by the Department of Energy ASCI
VIEWS program under contract B504967 with support from
Philip Heermann of Sandia National Labs. I would also like
to thank my colleagues in the Office of the Future research



group at the University of North Carolina at Chapel Hill:
Justin Hensley, Ruigang Yang, Aditi Majumder, and Her-
man Towles. I would also like to thank Michael Brown from
the University of Kentucky.

References

[1] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A.
DeFanti. Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of the CAVE.
Computer Graphics, 27(Annual Conference Series):135–
142, 1993.

[2] B. Delaunay. Sur la sphere vide. izv. akak. nauuk sssr.
Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793
– 800, 1934.

[3] G. Humphreys and P. Hanrahan. A distributed
graphics system for large tiled displays. In IEEE
Visualization 1999, San Francisco, October 1999.
http://citeseer.nj.nec.com/241717.html.

[4] Intel. OpenCV: Open Source Computer Vision Library.
http://www.intel.com/research/mrl/research/opencv/.

[5] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook,
S. Damianakis, G. Essl, A. Finkelstein, T. Funkhouser,
T. Housel, A. Klein, Z. Liu, E. Praun, R. Samanta,
B. Shedd, P. J. Singh, G. Tzanetakis, and J. Zheng.
Early experiences and challenges in building and using
a scalable display wall system. IEEE Computer Graph-
ics and Applications, 20(29–37):671–680, 2000.

[6] The University of Minnesota. Power wall.
http://www.lcse.umn.edu/research/powerwall/ power-
wall.html.

[7] Ramesh Raskar. Immersive Planar Display using
Roughly Aligned Projectors. In IEEE VR 2000, New
Brunswich, NJ, USA, March 2000.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood,
and A. Hopper. Virtual Network Comput-
ing. IEEE Internet Computing, 2(1):33–38, 1998.
http://www.uk.research.att.com/vnc/.

[9] Trimension Systems. http://www.trimension-inc.com.

[10] Panoram Technologies. http://www.panoramtech.com.

[11] Ruigang Yang, David Gotz, Justin Hensley, Herman
Towles, and Michael S. Brown. PixelFlex: A Reconfig-
urable Multi-Projector Display System. In Submitted
to IEEE Visualization 2001, San Diego, CA, USA, Oc-
tober 2001.


