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Fig. 1: Counterfactual visualization tool. The user has applied a filter constraint (a) to a multidimensional dataset and is shown the
resulting included, counterfactual, and excluded subsets (b), their outcome distributions (c), and other feature information (d–i).

Abstract— Complex, high-dimensional data is used in a wide range of domains to explore problems and make decisions. Analysis
of high-dimensional data, however, is vulnerable to the hidden influence of confounding variables, especially as users apply ad hoc
filtering operations to visualize only specific subsets of an entire dataset. Thus, visual data-driven analysis can mislead users and
encourage mistaken assumptions about causality or the strength of relationships between features. This work introduces a novel visual
approach designed to reveal the presence of confounding variables via counterfactual possibilities during visual data analysis. It is
implemented in CoFact, an interactive visualization prototype that determines and visualizes counterfactual subsets to better support
user exploration of feature relationships. Using publicly available datasets, we conducted a controlled user study to demonstrate the
effectiveness of our approach; the results indicate that users exposed to counterfactual visualizations formed more careful judgments
about feature-to-outcome relationships.

Index Terms—visualization, counterfactuals, human-computer interaction, human-centered computing, empirical study

1 INTRODUCTION

Supporting user inference and decision-making is one of the primary
goals of information visualization, and data visualization systems there-
fore offer a variety of intuitive data representations and interactive
tools to assist users. Visualization is used in a wide range of domains
to explore problems and make decisions using large, complex, and
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high-dimensional datasets [50], with some level of trust that it will
reveal important, otherwise easy-to-miss information. Visualizations
do provide crucial insights, but visual data analysis can often overlook
the hidden influence of confounding variables. This is especially true if
users apply ad hoc filtering operations to visualize specific subsets of
high-dimensional data [2]. This “overview first, zoom and filter, then
details on demand” workflow [61] is found in many popular data visu-
alization tools, such as Tableau. Although this approach is invaluable
for managing large data, it may also encourage mistaken assumptions
about causality or the strength of relationships between features. For
example, imagine two groups of individuals, where group A is active
on social media and group B is not. Presented only with visual infor-
mation that shows that group A is overall unhappier, one might infer
that social media activity determines individual levels of happiness.
While an analyst may conduct more rigorous data analyses to reach any
definite conclusions, the absence of visual cues about the effect of other
attributes on the two groups can lead to unconscious assumptions about
social media’s relationship with happiness, which can bias subsequent
analytical work. In this scenario, the theory of counterfactual thinking
would urge the following questions: Could individuals be unhappy
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even without social media? What are other factors that contribute to
unhappiness, more or less so than social media usage does?

Fields such as causal analysis and explainable artificial intelligence
have growing analytical and visual support for counterfactual thinking,
but there is little to no such support for it in data exploration stages that
precede causal analysis or data modeling via machine learning. We
believe that confounding factors are easy to overlook during visual data
exploration, as confirmed by the results presented in Section 5. Moti-
vated to fill this gap, we developed CoFact, a novel visual approach and
system prototype that can reveal the presence of confounding factors
during earlier stages of visual data analysis. CoFact enables users to
interactively explore data, perform filtering operations, and analyze
counterfactual subsets to help guard against potentially erroneous con-
clusions about feature-to-outcome relationships. The key contributions
in this paper are summarized as follows:

• Approach: We present a novel way of visualizing and analyzing
counterfactual subsets to investigate the influence of confounding
factors within large and complex datasets.

• Prototype: We introduce CoFact, a visualization system proto-
type to reveal the influence of confounding variables and improve
user decision-making during earlier stages of data analysis.

• Evaluation: We demonstrate the effectiveness of our approach
as implemented within CoFact through a controlled user study
and interviews with 30 participants. Results show that the coun-
terfactual visualizations significantly influenced user inference,
reducing user confidence in weak feature-to-outcome relation-
ships while confirming higher confidence in stronger feature-to-
outcome relationships.

2 RELATED WORK
The counterfactual-based approach to visualization presented in this
paper builds upon prior research in a number of closely-related areas.
This section discusses work in the areas of causal analysis, explainable
machine learning, and data subset creation and analysis.

2.1 Counterfactual Thinking for Causal Analysis
Early work on causality theory includes that by Pearl [51, 52], Spirtes
[64, 65], and others. Causality theory rests on counterfactual thinking
[25,39]: if A causes B, then in an alternative, “counterfactual” scenario
where A does not occur, B will not occur. Counterfactual thinking also
asks us to investigate possible scenarios in which A does not occur
but B occurs nonetheless. Byrne [4] adds that counterfactuals can
amplify causal judgement, since knowing that an alternative scenario
that eliminates A would not lead to B would amplify one’s judgement
of a causal relationship between A and B. Knowing that an alternative
scenario eliminates A but also leads to B would weaken confidence in
the influence of A on B. We revisit this idea in Section 3.1 to explain
the value of visualizing counterfactual subsets.

The use of large-scale data for causal inference and analysis is
widespread, as researchers and analysts across domains seek to un-
derstand how data attributes influence certain outcomes [70]. Many
approaches exist to identify and model causal relationships in obser-
vational data [44, 53, 59], and several visualization systems support
such analyses with suites of data visualization and interaction tools.
Traditional visualizations include directed acyclic graph (DAG) layouts
and Hasse diagrams [27]. Researchers have also proposed alterna-
tives, such as Growing Squares [16] and Growing Polygons [15], to
enhance typical DAGs. The Visual Causality Analyst offers 2D graph
views and statistical parameters to reveal possible causal influences of
variables [70]. Others have introduced animations illustrating causal
relationships [29] and a visual causal analysis system for hypothesis
generation and evaluation [5]. While determining causality is not this
work’s primary goal, casual analysis does provide the context within
which CoFact aims to provide additional insight. In contrast to past
approaches, CoFact does not depend on or depict abstract DAGs. In-
stead, it visualizes counterfactual subsets, as described later, to facilitate
analysis during data exploration.

2.2 Counterfactual Explanations in Machine Learning
Counterfactual thinking has gained increased recent attention in ex-
plainable machine learning research. Similar to counterfactual thinking
for causal analysis [39], counterfactual explanations explore what modi-
fications in the data would lead to an alternative prediction by a machine
learning model [47, 69]. Several techniques exist for generating coun-
terfactual explanations [19, 24, 31, 41, 43, 63]. One example is DATE,
which focuses on optimization and tree-based models [42]. Most
techniques for counterfactual explanation generation focus on deep
neural networks [40, 66], while LIME and DiCE are model-agnostic
tools [49, 57].

Visualization systems for counterfactual explanations have also been
developed to present actionable insights. For example, DECE supports
comparison of subsets’ counterfactual examples [6]. Other systems
include Prospector [37] and RuleMatrix [48], both of which are model-
agnostic. The What-If Tool [71] enables interactive exploration of
machine learning models to help users find the nearest “counterfactual”
data point. ViCE [20] visualizes the minimum modification required to
change a model’s prediction, and [21] introduces counterfactual visual
explanations for image data. Lastly, [54] addresses shortcomings of
counterfactual explanations and proposes FACE to find “feasible paths”
between a subject’s current and desired states. While such systems
exist to help explore counterfactual possibilities in machine learning,
counterfactual visualization support for data analysis in pre-modelling
stages is rare.

2.3 Data Subsets and Counterfactual Possibilities
This paper’s focus is on the data exploration stages that precede causal
analysis and modeling, during which data filtering and subset creation
are common preliminary steps to examine the influence of certain fea-
tures on an outcome [35, 46]. Existing systems employ various interac-
tion techniques to help users create and analyze data subsets [18,33,73],
while others have proposed algorithms for automated feature selec-
tion [58, 67]. Visualization methods often employ correlation analysis
and use scatter plots and heat maps to display feature information.
Researchers have also proposed a range of geometrically transformed
displays [8, 10, 28, 32, 34, 36, 38, 60] and radial visualization meth-
ods [12, 13] for feature evaluation. An example is [14], which adapts
the RadViz technique [22, 23] to project attributes onto a 2D space.
Others offer related approaches to dimension reduction for feature set
evaluation [7, 9, 26].

Researchers have noted the uncertainty and bias problems inherent
in making inferences based upon visual representations of user-defined
subsets [1]. Additionally, visual data exploration is often undertaken by
analysts with little a priori knowledge about the data features, lending
them more vulnerable to whatever algorithmic or statistical biases are
visualized [14]. While the tools mentioned above help users examine
data features and their relationships, they lack explicit visualizations of
counterfactual possibilities that might illuminate confounding factors.
Thus, in this paper, we augment standard data subset creation, analysis,
and visualization techniques by visualizing counterfactual subsets as
described in Section 3. The goal of visualizing counterfactual data is
to protect users from spurious assumptions about causal relationships
until causality can be analytically established during later stages of data
analysis.

3 COFACT
This section describes the proposed counterfactual approach to visual
data analysis (Section 3.1) and the visual interface of CoFact (Sec-
tion 3.3). Two usage scenarios that demonstrate the approach and
interface are detailed in Section 3.4.

3.1 Counterfactual Approach
The primary goal of CoFact is to caution users against false inferences
about a data variable’s causal effect. To this end, CoFact visually alerts
users to possible confounding factors during data exploration, which
typically arise when they perform ad hoc filtering operations to analyze
relationships between data variables. Key conceptual components of
this visualization system include the counterfactual subset and filter
strength as described below.



3.1.1 Counterfactual Subset

Consider the social media example introduced in Section 1. Typically,
upon applying a filter constraint such as “social media status = active”
on a dataset of individuals, two subsets are created: the included subset
of individuals who match the filter criterion (people active on social
media) and the excluded subset of individuals who do not match it
(people inactive on social media). We propose a third, counterfactual
subset comprising data samples that do not match the filter constraint
but are similar to the included subset in other ways. Filtering thus
creates three distinct subsets: (1) the included subset (IN), (2) the
counterfactual subset (CF), which does not match the filter constraint
but is similar to the included subset across other features, and (3) the
excluded subset (EX) which does not match the filter constraint and
also differs substantially from the included subset across other features.

In the social media example, subset CF would include inactive indi-
viduals who are similar to active individuals across other features such
as age, time spent online, and overall well-being, whereas subset EX
would include inactive individuals who are also different from active
individuals across other features. We determine CF and EX by comput-
ing the similarity, as measured by the Euclidean distance [11], between
samples a0. . . an-1 in IN and samples b0. . . bm-1 that do not match the
filter constraint. For categorical features, the distance between any
two values is 1 if they are equal and 0 if they are not. For each bj, we
calculate the similarity to IN as the mean of the normalized distances
to each ai. As a default, which was used in our user study, we form
CF using the top 50% most similar samples, and EX using the bottom
50%. Section 6.2 discusses other potential methods (e.g., alternative
distance and similarity metrics, different subset sizes) for determining
the counterfactual subset.

3.1.2 Characterizing Filters

Suppose that the data analysis goal is to understand to what extent
various data features contribute to an outcome of interest. To do so,
one can apply different filter constraints and observe their impact on
the outcome distributions of the IN, CF, and EX subsets — oIN , oCF ,
and oEX respectively. This impact, evaluated based on the extent to
which the filter constraint ( f ) differentiates oIN , oCF , and oEX , exists
on a spectrum. At one extreme, after applying a filter constraint, oIN
might differ significantly from both oCF and oEX , even though IN
and CF are similar across features other than f , whereas CF and EX
are overall more dissimilar but share f . Such an effect suggests a
notable influence of f on the outcome. At the other extreme, after
applying a filter constraint, oIN and oCF might be very similar despite
the difference in f , while oEX differs significantly from both. Such an
effect suggests a negligible influence of f on the outcome because oCF
and oEX are different despite sharing f . Between these two extremes, a
filter constraint’s impact might lead to less definitive insights.

Given this spectrum, we characterize filter constraints on a scale
from 0 to 1, where 0 corresponds to no impact by f (i.e., oIN = oCF )
and 1 corresponds to a large impact (i.e., a maximal difference between
oIN and oCF ). To measure this difference and characterize filters accord-
ingly, the Hellinger distance [62] is used for categorical outcomes and
the Kolmogorov-Smirnov test [45] for numerical outcomes. To evalu-
ate the proposed counterfactual approach within CoFact, we defined
three categories of Filter Strength — weak≤ 0.40 < moderate < 0.60
≤ strong — to characterize a filter constraint’s impact using these
measures (Table 1). These thresholds are based on a commonly used
categorization of effect size on a spectrum from weak to strong [17].
We conducted an empirical analysis to check that these thresholds are
suitable for both the Hellinger and Kolmogorov-Smirnov test measures.

Filter Strength Weak Moderate Strong
IN/CF
Difference d 0≤ d≤ 0.40 0.40 < d < 0.60 0.60 ≤ d ≤ 1

Table 1: Filter strength thresholds based on IN/CF difference.

Fig. 2: CoFact landing page. The user must first choose a file (a) and
then select an outcome of interest (b, e) to proceed.

Consider again the social media and happiness example. Suppose
that, upon applying the filter “social media status = active” ( f ), one
finds that active individuals (IN) and similar inactive individuals (CF)
both have high levels of unhappiness (oIN ∼ oCF ), whereas inactive
individuals dissimilar to active individuals (EX) have low levels of hap-
piness ({oIN , oCF} � oEX ). This filter constraint would be considered
weak, for there is little difference between IN and CF (d ≤ 0.40). On
the other hand, suppose that, after applying f , one finds that active
individuals (IN) have high levels of unhappiness (oIN � {oCF , oEX}),
whereas inactive individuals both similar (CF) and dissimilar (EX) to
active individuals have low levels of happiness (oCF ∼ oEX ). In this
case the filter constraint would be considered strong (d ≥ 0.60).

Among the filters used in our evaluation of CoFact that are listed
in Table 2, FV RS is weak because its corresponding IN/CF difference
measure is 0.33. In contrast, FS is strong because its corresponding
measure is 0.69. FUNEMP1 is moderate, with a corresponding measure
of 0.47. If a filter involves applying more than one feature constraint
(e.g., “social media status = active” & “age < 20”), the IN/CF dif-
ference is calculated in the same way using the final IN, CF, and EX
distributions after the compounded filters are applied, as with user study
tasks TModerate1, TWeak2, and TStrong3 in Table 3.

3.2 Design Requirements
Based on the motivation and purpose of CoFact, three key design
requirements were identified. While not derived through a formal
empirical study, these are informed by the authors’ long history of
developing visual analytics tools in collaboration with experienced
high-dimensional data users and analysts.

R1 Use feature information to choose, refine, and apply data fil-
ter constraints. Feature statistics and visualizations should help
users evaluate and choose filter constraints.

R2 Understand the included, counterfactual, and excluded sub-
sets, and, relatedly, evaluate feature-to-outcome relation-
ships. Users should be able to understand the three subsets that
result from filtering operations. Information presented about the
subsets should inform user inference about the influence of a filter
contraint feature on the outcome of interest.

R3 Compare feature differences across subsets. The presentation
of the differences in features across subsets should further user
understanding of the features and of their relationships with the
outcome of interest.



3.3 Visual Interface

We designed CoFact to improve user decision-making via the proposed
counterfactual approach and to support design requirements R1–R3.
CoFact is built as an Electron application using D3 and JavaScript, and
it accepts as input CSV data tables in tidy format [72].

3.3.1 Initial Analysis Configuration

The user begins by selecting a data file to load into CoFact. After
loading, a summary of feature names and data types is displayed (Fig-
ure 2 (b–c)). A feature can be categorical (binary or non-dichotomous)
or numerical. Clicking on any feature name button displays a corre-
sponding distribution plot (d). Distributions are shown using line charts
for continuous variables and bar charts for categorical variables. The
user then selects a feature to serve as the primary outcome of interest (e).
This outcome feature is used to compare subsets during the subsequent
analysis.

After selecting an outcome of interest, the user is shown the first
analysis page (Figure 3). The primary analytical task is to explore how
the outcome feature is influenced by other features. We thus provide
information about feature-to-outcome associations. The association
measures described next are intended to guide users, however they are
not key components of the proposed counterfactual approach. Pro-
vided both the association and counterfactual information, users may
engage in an iterative process in which they compare different sets of
information and modify their analyses accordingly. The visualizations
in CoFact present one specific implementation, however the general
counterfactual approach is not limited to it.

A list of feature buttons is displayed in the “Name” column (a),
which users can sort alphabetically in ascending or descending order.
The “Association to Outcome” column (b) shows how strongly a feature
is associated with the outcome on a [-1, 1] or [0, 1] scale depending on
the feature types. If the feature and outcome are both numerical, this
value is the Pearson correlation coefficient. If the feature or outcome
is categorical and the other is numerical, multiple regression R2 is
used. If both the feature and outcome are categorical, Cramér’s V
is used to determine the association-to-outcome value. In our user
study (Section 4), participants viewed only correlation measures for
simplicity. Plots to the right of each association value graph it on a
number line (c). Users can click the green bar above the association-
to-outcome column to sort in ascending or descending order. The
“Sort by magnitude” checkbox enables users to ignore the signs of any
correlation values.

The next analytical step is to choose a filter constraint to narrow the
focus of the analysis. When a feature button (a) is clicked, two plots
display detailed information about the selected feature. The first plot (d)
shows the feature’s distribution. Users can click and drag to select a
range of feature values to use as a filter constraint. A line chart is used
for numerical features and a bar chart for categorical features. The
second plot shows the selected feature’s relationship to the outcome
of interest (Figure 3 (e)). When the selected feature is categorical and
the outcome is numerical, we use a violin plot. When both the selected
feature and the outcome are categorical, we use a heat map. When both
the selected feature and outcome are numerical, a hex map is used as
shown in Figure 3 (e).

These visualizations help users decide upon a filter (R1). After
selecting a feature and choosing the desired value via the distribution
plot, users can click the “Filter” button (Figure 3 (f)) to perform a
filtering operation.

3.3.2 Subset Visualization

Applying a filter leads to the main analysis page displayed in Figure 1.
The filter constraint is listed in the “Filters” column (a). The “Subsets”
section (b) on the right shows the three subsets created by filtering: the
included (IN) , counterfactual (CF) , and excluded (EX) subsets.
The colored bars show what percentage of all data makes up the given
subset. Plot (c) shows the outcome distributions of each of the three
subsets. For example, the orange line shows what percentage of CF has
certain outcome values. These visualizations support R2 by enabling

users to compare outcome distributions across subsets to evaluate the
applied filter’s strength with respect to the outcome.

3.3.3 Comparative Feature Information

In Figure 1 (d), “Association to Outcome” columns now display asso-
ciation values for IN, CF, and EX separately. The user can sort each
column in ascending or descending order. Column (e) graphs the as-
sociation values for each subset on a number line. Plot (f) graphs the
selected feature’s distributions for each of the three subsets. Below this
graph, there are three separate feature vs. outcome plots for IN (g),
CF (h), and EX (i). Taken together, the feature information and visual-
izations provided for each individual subset help users further explore
features, edit existing filter constraints, and add new ones to the list of
filters (a). These components support R3.

3.4 Usage Scenarios
This section describes two usage scenarios to illustrate the concepts
from Section 3.1 using the visual interface introduced in Section 3.3.
User study participants engaged with these and six other scenarios as
described in Section 4. These two scenarios use a dataset which in-
cludes information related to criminal recidivism [55]. The outcome of
interest is Recidivism Within Two Years (two year recid), a categorical
feature which the user selects on the landing page (Figure 2). A value
of 0 for two year recid indicates that the defendant was not arrested
again for an offense within two years since the last arrest. A value of
1 indicates that they were arrested again within two years. Using the
information and visualizations on the first analysis page (Figure 3), the
user can now choose and apply a filter constraint.

3.4.1 Weak Filter Scenario

The user first analyzes the influence of Violent Recidivism Risk
(v decile score) on two year recid, the outcome of interest. To narrow
their focus, they apply a filter constraint that v decile score should be
between 6 and 10, which are relatively high risk scores. This operation
creates distinct subsets to be visualized, similar to Figure 1 (which
uses a numerical outcome). Figure 4 displays the outcome distribu-
tions for each subset. Figure 4 (a) only visualizes defendants with
high risk scores and those with low risk scores ; the counterfactual
subset is empty. These visualized subsets are denoted IN and EXcontrol ,
respectively. Figure 4 (b), on the other hand, includes a non-empty
counterfactual subset (CF ), and EX is distinct from CF. IN is
identical in (a) and (b). Looking only at plot (a), the user is likely to
have high confidence in v decile score’s influence on two year recid,
as there is a significant visual difference in the outcome distributions of
the two subsets.

Figure 4 (b) offers contradicting information. Here, CF comprises
defendants with low scores who are similar to IN in other ways. Individ-
uals in EX still have low recidivism scores but are also more different
from IN across other features than are individuals in CF. This plot shows
that CF, despite having low scores, has a similar outcome distribution
as IN (defendants with high scores) and a visually distinct outcome
distribution from EX. This visualization alerts the user to possible
confounding features that influence the outcome more strongly than
v decile score, leading them to lower their confidence in the influence
of v decile score on two year recid.

For visual reference, Figure 6 (a) shows what a weak filter scenario
may look like for a different numerical outcome of interest. As with
Figure 4 (b), IN and CF have similar outcome distributions, and
both are different from the outcome distribution of EX .

3.4.2 Strong Filter Scenario

Next, the user analyzes the influence of sex on two year recid. To nar-
row their focus, they apply a filter constraint that sex should be female.
This operation again creates distinct subsets for visualization. Figure 5
displays the outcome distributions for each subset. Figure 5 (a) only
visualizes female (IN) and male (EXcontrol) defendants. Looking
only at this plot, the user is likely to again have relatively high confi-
dence that sex influences two year recid, albeit somewhat lower than



Fig. 3: First analysis page. Feature information is displayed after the user chooses an outcome of interest to facilitate filter selection.

(a) Only IN and EXcontrol (b) IN , CF , and EX

Fig. 4: Subset distributions for the outcome (two year recid) with a
weak filter (6 < v decile score < 10).

(a) Only IN and EXcontrol (b) IN , CF , and EX

Fig. 5: Subset distributions for the outcome (two year recid) with a
strong filter (sex = female).

(a) IN , CF , EX with weak filter (b) IN , CF , and EX with strong filter

Fig. 6: Example subset distributions for a numerical outcome.

they did for v decile score due to a less stark difference in the subsets’
outcome distributions.

In this scenario, Figure 5 (b) shows CF , comprising male defen-
dants who are similar to female defendants (IN ) in other ways. EX
are male defendants who are more dissimilar to IN. This plot shows that
CF, despite being similar to IN across other features, has a noticeably
different outcome distribution than IN. CF’s outcome distribution is
actually close to that of EX. Thus, despite other similarities, the dif-
ference in sex differentiates outcome distributions for the female (IN)
and male (CF, EX) subsets. This confirms or increases the user’s high
confidence in the influence of sex on two year recid.

Figure 6 (b) shows an example strong filter scenario for a numerical
outcome. Similar to Figure 5 (b), IN has a distinctly different outcome
distribution than both CF and EX , which are similar to each other.

4 USER STUDY

This section describes a controlled user study (n = 30) that evaluates
CoFact’s ability to convey counterfactual possibilities. Results from
the experimental tasks and feedback from post-study interviews (Sec-
tion 5) suggest that the counterfactual visualizations improved user
inference about feature-to-outcome relationships without hampering
system usability.

4.1 Hypotheses

The user study was designed to test the following hypotheses:
Hypothesis 1. Users exposed to the counterfactual visualizations

will have lower confidence in the influence of a weak filter on the
outcome of interest than users who do not view the counterfactual
subset. Relatedly, users exposed to the counterfactual visualizations
will have a similarly high confidence in the influence of a strong filter
on the outcome of interest as users who do not view the counterfactual
subset.

Hypothesis 2. Upon being exposed to the counterfactual subset,
users who initially did not view the counterfactual visualizations will
have decreased confidence in a weak filter’s influence but will maintain
relatively high confidence in a strong filter’s influence.

Hypothesis 3. The added counterfactual subset visualization capa-
bility will not significantly decrease the system’s usability, efficiency,
or the overall quality of user experience.



Filter Strength
(IN/CF Difference)

Description Constraint

Dataset 1: Housing Prices, Outcome of Interest: Sale Price
FLA Strong (0.60) Living area square footage Within range 2200–5100

Dataset 2: COVID-19 State Policies, Outcome of Interest: Percentage of State Population with Positive Cases
FSIP Weak (0.18) Date state started shelter in place On a day in April
FUNEMP1 Moderate (0.47) Percentage of state population unemployed Within range 1–3.5
FRNEB Weak (0.25) Date state reopened non-essential businesses On a day in March or April
FWUIM Strong (0.68) Weekly unemployment insurance maximum provided Within range 240–350
FUNEMP2 Weak (0.38) Percentage of state population unemployed Equal to or above 5

Dataset 3: Recidivism, Outcome of Interest: Recidivism within Two Years
FV RS Weak (0.33) Violent recidivism risk Within range 6–10
FS Strong (0.69) Sex Female

Table 2: Filter constraints for the experimental data analysis tasks listed in Table 3.

Dataset 1 Dataset 2 Dataset 3
Task TStrong1 TWeak1 TModerate1 TWeak2 TStrong2 TStrong3 TWeak3 TStrong4

Task Strength
(IN/CF Difference)

Strong
(0.60)

Weak
(0.18)

Moderate
(0.43)

Weak
(0.20)

Strong
(0.68)

Strong
(0.82)

Weak
(0.33)

Strong
(0.69)

Filter(s) Applied FLA FSIP FSIP +
FUNEMP1

FSIP +
FRNEB

FWUIM FWUIM +
FUNEMP2

FV RS FS

Table 3: User study experimental data analysis tasks, using the filter constraints listed in Table 2.

Users should have decreased confidence in a weak filter after view-
ing the counterfactual subset because this subset reveals the presence
of counterfactual explanations for differences in outcome distributions
that lie beyond the difference due to the filter constraint. Users should
maintain relatively high confidence in a strong filter because the result-
ing counterfactual subset’s distribution would be distinct from that of
the included subset, suggesting that the filter variable is valuable in
explaining differences in outcome.

4.2 Data

We used three publicly available datasets for the user study. Dataset 1
was obtained from Kaggle and includes information (163 features,
n = 1500) about houses and their sale prices [30]. Dataset 2 contains
information (42 features, n = 50) related to the COVID-19 pandemic.
It was formed using two separate publicly available datasets: (1) in-
formation about COVID-19 cases and deaths in U.S. states [68] and
(2) U.S. state policies related to the pandemic [56]. Dataset 3, published
by ProPublica, contains information (20 features, n = 1500) related to
criminal recidivism [55].

4.3 Design and Procedure

4.3.1 Participants and Groups

We recruited 30 participants (male = 14, female = 16) via a campus-
wide email, department mailing lists, and recruitment efforts within our
professional network. All participants were at least 18 years old and
were either pursuing or had attained a university degree. Participants
belonged to a diverse range of academic and professional sectors. Under
a between-subjects design, 15 were randomly assigned to the control
group (C) and primarily saw visualizations for only two subsets, while
15 were assigned to the counterfactual group (CF) and viewed the
counterfactual subset as well.

4.3.2 Procedures and Study Tasks

User study sessions were conducted remotely using Zoom video con-
ferencing, and each lasted for roughly one hour. First, participants
answered a pre-study questionnaire that asked them, among other ques-
tions, to rate their level of expertise on a scale from 1 (novice) to 7

(expert). Groups C and CF reported no significant difference in exper-
tise for both general data analysis (p = 0.50) and visual data analysis
(p = 0.37).

Next, we reviewed essential terms (e.g., counterfactual) and gave
participants a tour of the visual interface. Participants were then pro-
vided remote control of the moderator’s screen and guided through
some practice data analysis tasks in CoFact, before they completed the
main experimental tasks listed in Table 3. Each task’s strength and
corresponding IN/CF Difference measure are provided in the second
column according to the methodology described in Section 3.1.2. Each
participant completed 7 analysis tasks, while 23 participants (14 in
group C, 9 in group CF) also had time to complete an additional task
(TTTWWWeeeaaakkk222). Each task involved applying the corresponding filter con-
straints detailed in Table 2 and then responding to questions Q1–Q3
listed in Table 4. The questions asked users to describe what they
observed and what inferences they drew using the visualizations.

After the pre-study questionnaire, group CF participants completed
the experimental tasks. Group C participants did the same, but they also
repeated TTTWWWeeeaaakkk333 and TTT SSStttrrrooonnnggg444 after being exposed to the counterfactual
subset. Despite the time constraint, this variation for group C enabled
us to gather within-subjects results for at least two tasks. Section 3.4
describes the expected behaviors for TTTWWWeeeaaakkk333 and TTT SSStttrrrooonnnggg444 in more
detail. Finally, participants provided post-study feedback about the
tool’s usefulness and their overall experience via a questionnaire.

4.3.3 Measures

After performing each of the tasks listed in Table 3, participants reported
their confidence in each filter constraint’s influence on the outcome of
interest on a scale from 1 (no confidence) to 7 (high confidence) in
response to Q3 in Table 4. For the post-study questionnaire, participants
provided their level of agreement with eight statements related to the
criteria listed in Table 5, on a scale from 1 (strongly disagree) to 7
(strongly agree).

5 RESULTS

This section reports results and feedback from the user study (Section 4).
Overall, results support Hypotheses 1–3 (Section 4.1), requirements
R1–R3 (Section 3.2), and user experience metrics M1–M3 (Table 5).



Counterfactual Group (CF) Control Group (C)
[Q1] Difference
in outcome
distributions

Q1-CF1: On a scale of 1 to 7, how different
are the outcome distributions for the counter-
factual and included subsets?

Q1-CF2: On a scale of 1 to 7, how dif-
ferent are the outcome distributions for the
counterfactual and excluded subsets?

Q1-C: On a scale of 1 to 7, how different are
the outcome distributions for the included and
excluded subsets?

[Q2] Comments What does this make you think about the filter variable’s influence on the outcome?
[Q3] Confidence On a scale of 1 to 7, how confident are you in the filter variable’s influence on the outcome?

Table 4: Experimental questions participants responded to after each data analysis task.

Metric Criterion
[M1] Usability M1.1

M1.2
M1.3

Users should find the system overall easy to use.
It should be easy to add and remove filters.
It should be easy to understand the visual subset divisions that result from a filter
operation.

[M2] Informativeness M2.1

M2.2

M2.3

M2.4

Users should find the system informative overall and use it to explore data in a
way they would not be able to otherwise.
Users should find the feature-to-outcome correlations and feature distributions
informative.
Users should find the differences in feature-to-outcome correlations and feature
distributions across subsets informative.
Users should find the counterfactual visualization capability informative and
helpful for better exploring feature-to-outcome relationships.

[M3] Efficiency Users should analyze and understand data more efficiently using CoFact.

Table 5: Criteria to evaluate user experience.

5.1 Confidence
We evaluated self-reported confidence with a 2 (treatment group: C vs.
CF ) × 2 (strength: weak vs. strong) repeated measures ANOVA with
treatment group as a between-subjects factor and strength as a within-
subjects factor using the afex package in R. See Table 6. Post-hoc
analysis was performed using estimated-marginal means with Tukey
method adjustments for repeated tests. The TTT MMMooodddeeerrraaattteee111 task was re-
moved from this analysis due to there being only a single moderate task
in the experiment.

Below we analyze differences in self-reported confidence between
the C and CF treatment groups with respect to overall task strength
and individual tasks. We report significant results with effect sizes and
confidence intervals. In general the effect sizes are moderate to strong,
which provides support for Hypotheses 1 and 2 related to participant
confidence.

F η2 p
TREATMENT 3.44 0.07 0.07
STRENGTH 39.33 0.35 0.00
TREATMENT:STRENGTH 6.42 0.08 0.02

Table 6: Results from the 2 (treatment group: C vs. CF) × 2 (strength:
weak, strong) repeated measures ANOVA evaluating user confidence.

A significant main effect of strength was found (F(1,28) = 39.33,
p < 0.001, η2 = 0.35). Participants were significantly more confident
with the strong tasks (M = 5.15, SD= 1.43) compared to the weak tasks
(M = 3.77, SD = 1.67). This main effect is quantified by the higher
order significant treatment × strength interaction (F(1,28) = 6.42,
p = 0.02, η2 = 0.08).

The CF treatment group was significantly less confident when evalu-
ating weak tasks (M = 3.26, CI = [2.75,3.76]) compared to all other
conditions. The CF treatment group evaluating weak tasks was less con-
fident than the CF treatment group evaluating strong tasks (M = 5.17,

Fig. 7: Box plots of confidence for strong and weak tasks by treatment
group.

CI = [4.67,5.67], t(28) = 6.23, p < 0.0001), the C treatment group
evaluating weak tasks (M = 4.32, CI = [3.82,4.82], t(52.8) = 3.02,
p= 0.02), and the C treatment group evaluating strong tasks (M = 4.63,
CI = [4.63,5.63], t(52.8) = 5.32, p < 0.0001). No other significant
results were found. See Figure 7. These results support Hypothesis 1,
that participants exposed to the counterfactual visualizations (CF) will
have lower confidence in the influence of a weak filter on the outcome
of interest than participants who do not view the counterfactual subset
(C), but will have a similarly high confidence in the influence of a
strong filter.

F η2 p
TREATMENT 1.33 0.02 0.26
TASK 8.75 0.24 0.00
TREATMENT:TASK 3.40 0.11 0.01

Table 7: Results from the 2 (treatment group: C vs. CF) × 8 (task)
repeated measures ANOVA evaluating user confidence for each task.



We further investigated if there were differences between treatment
groups for each of the tasks with a 2 (treatment group: C vs. CF) ×
8 (task) repeated measures ANOVA (Table 7). Post-hoc analysis was
again performed using estimated-marginal means with Tukey method
adjustments for repeated tests. A significant main effect of task was
found (F(4.40,92.43) = 8.75, p < 0.001, η2 = 0.24). This main inter-
action was quantified by the higher-order significant treatment × task
interaction (F(4.40,92.43) = 3.40, p = 0.01, η2 = 0.11). Post-hoc
analysis was performed pair-wise comparing treatments for each task
using estimated-marginal means with Tukey method adjustments for
repeated tests. Significant differences were found between the C and
CF treatments for TTTWWWeeeaaakkk222 (t(144) = 2.59, p = 0.01, η2 = 0.04) and
TTTWWWeeeaaakkk333 (t(144) = 3.76, p = 0.0002, η2 = 0.09). Participants in group
CF had significantly lower confidence compared to those in group C.
See Figure 8.

These results further support Hypothesis 1. The lone exception is for
task TTTWWWeeeaaakkk111, where participants in group CF did not have significantly
lower confidence than participants in group C. A possible explanation
for this phenomenon relates to existing knowledge of the subject matter.
As information about the COVID-19 pandemic was widely spread at the
time of the user study, participants may have had difficulty separating
prior knowledge from the graphical presentation of the subset outcome
distributions. The plotted lines may not have fit with their understanding
of the real-world role of the filter variable (FSIP in Table 2) and thus
confused their thinking. Participants often indicated that they did not
know what to make of this scenario, and confidence was relatively low
for both the C and CF groups (median value of 3).

As noted earlier, group C participants repeated a single weak task
(TTTWWWeeeaaakkk333) and strong task (TTT SSStttrrrooonnnggg444) a second time with the counterfac-
tual visualizations. We investigated the effect on confidence for these
tasks and participants. Analysis was performed with a 2 (strength: weak
vs. strong)× 2 (treatment group: C vs. CF) repeated-measures ANOVA
with both strength and treatment as within-participant variables.

Significant main effects of strength (F(1,14)= 8.73, p= 0.01, η2 =
0.08) and treatment (F(1,14) = 8.20, p= 0.01, η2 = 0.08) were found.
These main effects were quantified by the higher-order strength ×
treatment interaction (F(1,14) = 24.80, p < 0.001, η2 = 0.21). Post-
hoc analysis was performed comparing treatment for each strength.
For TTTWWWeeeaaakkk333, participants in the CF condition had significantly lower
confidence (M = 3.13, SE = 0.36, CI = [2.4,3.87]) compared to those
in the C condition (M = 5.33, SE = 0.36, CI = [4.6,6.1], t(28) = 5.55,
p< 0.0001). No significant difference was found between the C and CF
conditions in TTT SSStttrrrooonnnggg444 (t(28) =−1.51, p = 0.14). See Figure 9. These
results support Hypothesis 2, that user confidence would decrease for
a weak filter but remain relatively similar and high for a strong filter
upon viewing the counterfactual visualization.

Figure 10 displays box plots of the ratings participants provided for
the differences in outcome distributions between the included (IN) and
counterfactual (CF) subsets. It shows the corresponding confidence
participants reported in the filters’ influence on the outcome. The
4th and 10th pair of bars (TTTWWWeeeaaakkk333 and TTT SSStttrrrooonnnggg444, respectively) display
group C’s responses after viewing the counterfactual visualizations.
Generally, if participants reported a lower IN/CF difference rating, their
confidence was lower as well. The exception is TTTWWWeeeaaakkk222, for which
participants hesitated to report high confidence without knowing how
the two applied filters (FSIP + FRNEB) interacted, despite reportedly
observing a notable difference in the subsets’ outcome distributions.

5.2 User Experience
After completing the data analysis tasks, participants provided feedback
about their experience using CoFact. Each participant rated the extent
to which they agreed with the statements related to usability (M1),
informativeness (M2), and efficiency (M3) detailed in Table 5. Fig-
ure 11 displays these responses by groups C and CF . Overall,
ratings were favorable, with median ratings between 5 and 7, where 5
is “somewhat agree” that a metric quality (e.g., usability of filtering)
was met and 7 is “strongly agree.” Across all questions, no significant
differences in rating were found between groups C and CF, supporting
Hypothesis 3. In addition to these numeric ratings, the semi-structured

post-study interviews captured a wide range of free-form feedback.
Below we summarize findings from a qualitative thematic analysis [3]
of the interview responses.

Overall workflow. Participants mostly conveyed positive feedback
about the system’s overall usability and presentation. 22 of 30 partici-
pants (13 in group C, 9 in group CF) specifically noted that the interface
was straightforward and easy to use (“gave immediate visual feedback,”
“very intuitive and easy to use,” “user-friendly”) (R2). 12 participants
noted that they appreciated the ease of adding and removing filters
(R1). They also found useful the correlation information (“that part
would be really useful,” “ordering by correlation – I love that”) (R1,
R3). 28 participants answered “Yes” when asked whether or not the
system helped them complete the data analysis tasks, and comments
included “Yes absolutely strongly” (R2). One participant in group CF
who indicated a “No” explained that there was a “lot of confusion.”

Counterfactual visualization and interpretative assistance.
Overall, participants found the counterfactual visualization valuable
(R2). Comments included “prevents you from jumping to conclusions,”
“interesting way to look at data that I haven’t seen,” and “game changer
feature.” The visualization also “introduced new questions in a good
way,” “gives more nuance,” and seemed like “the voice of reason.”
Group CF participants did express that more effort was required to
understand the counterfactual subset (“I found myself getting a bit
confused,” “I had a little bit of trouble”). Several (11 of 30) asked for
additional annotations and interpretation-related indicators. One said it
would help if the tool could “automatically give some hints” about what
the subsets mean. Another asked for “confidence intervals, particularly
for the counterfactual bar graphs.” Lastly, participants expressed con-
cern and curiosity about how the counterfactual subset is determined,
as well as that they would like to choose what features are used to
determine subset similarity: “more transparency on what’s considered
similar features,” “flexibility on how to calculate that.” Some suggested
that the counterfactual subset could be an optional visualization that
users can turn on and off.

Customization, additional features, and potential applications.
Three participants from different domain backgrounds noted that they
were more familiar with other types of graphs and suggested the ability
to choose how data is plotted, i.e., using a pie chart instead of a his-
togram. Five mentioned the ability to customize colors. Also, while
most appreciated the ability to choose filter ranges by clicking and
dragging on the distribution plots, 11 wanted more precise control and
the ability to type values. Two participants noted that CoFact would
be a valuable teaching tool to demonstrate certain data analysis and
statistical concepts. One said, “something like this would have a huge
impact on an intro [computer science] course,” “shows...how you can
make more meaning from huge amounts of data.”

6 DISCUSSION

This section discusses both key implications and limitations of the user
study and CoFact (Section 6.1). Potential future directions for this work
are also presented (Section 6.2).

6.1 User Study Results and Limitations
The user study sought to evaluate the three hypotheses described in
Section 4.1, as well as to gather general feedback about user experience
with CoFact. Overall, results (Section 5) support Hypotheses 1–3:
the counterfactual subset visualizations improved user judgment with-
out hampering usability and the overall quality of user experience.
Feedback from participant interviews also gave us a more nuanced un-
derstanding of this work. Generally, the visualizations helped support
the primary requirements R1–R3 (Section 3.2): participants indicated
that feature information and visualizations helped them choose, apply,
and refine filters, after which they were able to, in general, understand
the visual subset representations and form judgments about feature-
to-outcome relationships. In the future we would allow more time
for unguided exploration of the user interface, specifically to more
rigorously test R1 and R3.

Two main limitations of the user study were (a) its time constraint
and (b) the ambiguity of confidence evaluation. First, users had a



Fig. 8: Box plots of confidence by treatment group for each task.

Fig. 9: Box plots of confidence for the TTTWWWeeeaaakkk333 and TTT SSStttrrrooonnnggg444 tasks for
participants who started in the C condition and then repeated these
tasks in the CF condition.

Fig. 10: Difference between included (IN) and counterfactual (CF)
subset outcome distributions and corresponding confidence levels.

limited amount of time to be introduced to, digest, and practice the
counterfactual approach using the visual system. This likely exac-
erbated confusion and risked encouraging participants to give quick,
non-thorough answers that were truly lower in confidence than was
conveyed. Second, participants sometimes found the confidence ques-
tion (Q3 in Table 4) ambiguous. Although the term captures what
we intended to study, its ambiguity could have affected participants’
responses, and we may seek more precise measures in the future.

6.2 Future Work
This work used a simple methodology to calculate the counterfactual
subset as described in Section 3.1. Future work should find more so-
phisticated methods for this task. In addition, future iterations of this
prototype could let users customize various aspects of the counterfac-
tual subset calculation, such as size and alternative similarity metrics,
e.g., entropy-based measures. Additionally, several participants asked

Fig. 11: User experience feedback provided by the control (C) and
counterfactual (CF) groups for criteria listed in Table 5.

for greater interpretative support in CoFact. Specifically, participants
would like the system to make suggestions about the kind of judgments
the user study asked them to make. We would like to explore automat-
ing the calculation and communication of visual suggestions about a
feature’s importance.

7 CONCLUSION

This paper presented a novel counterfactual approach that reveals the
presence of confounding factors during visual analysis, implemented in
the CoFact prototype system. CoFact enables users to interactively
explore data, apply filter constraints, and analyze the resulting in-
cluded, excluded, and counterfactual subsets. Visualization of the
proposed counterfactual subset, alongside other descriptive informa-
tion, encourages users to think more critically about feature-to-outcome
relationships and the potential of counterfactual possibilities during
data exploration.

A controlled user study (n = 30) was conducted to evaluate CoFact,
followed by semi-structured interviews about participants’ overall ex-
perience. Results indicate that the counterfactual visualizations led
to improved user inference without complicating the interface signifi-
cantly. With the counterfactual visualizations, users exhibited greater
confidence in strong outcome indicators and lower confidence for weak
outcome indicators. A thematic analysis of interviews suggested that
participants appreciated the counterfactual approach and would find it
useful for data exploration and decision-making. Key areas for future
work include (1) greater sophistication and customization in determin-
ing counterfactual subsets and (2) calculation and communication of
interpretive, actionable counterfactual insights.
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