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A Survey on Visual Analysis of
Event Sequence Data
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Abstract—Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a
variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional
and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns,
resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate
insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with
our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we
have also identified several remaining research challenges and future research opportunities.
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1 INTRODUCTION

E VENT sequence data are found across a vast array of ap-
plications and domains. In fields as diverse as computer

security, advertising, and healthcare, discrete observations
of different types are collected over time and arranged in
sequences based on the specific entity for which the event
is germane. For example, Electronic health records, mean-
while, capture events (e.g., diagnoses, procedures) over time
for individual patients. The ubiquity of event sequence data
reflects both (1) the relative ease with which it can be
captured, and (2) the desire to leverage this form of data
to gain new insights about real-world systems.

Formally, a temporal event sequence can be defined as
an ordered lists of events: ~s = [e0, e1, ..., en], where each
element e = (τ, t) represents a distinct event with τ as the
event’s type and t is the time at which the event occurred. In
contrast to time-series data where data are captured in the
continuous-time domain with fixed time lags, events in ~s are
discrete and can occur at any point in time. An electronic
medical record for a patient, for example, can be recognized
as a temporal event sequence containing a unique time-
sorted list of events from the patient’s medical history (e.g.,
diagnoses, lab tests, medications, and treatments). Even
though time-series data can be converted to event sequence
by dividing the time-series into time segments and charac-
terizing the data within the segment, in our work, we only
focus on works originally proposed for event sequences.

These common goals, however, are challenged by the
great heterogeneity that exists within different properties
of event sequence data and the types of insights that
are sought. For example, event sequences can be high-
dimensional (with many event types) or low-dimensional
(very few types of events). They can be sparse and irregular
over time, or dense and evenly spaced. Events can have
zero attributes or many, can be point events or intervals, and
can be strictly sequential or occur in parallel. Similarly, the
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types of analysis tasks can vary widely based on the types
of insights one seeks. Are analysts interested in common
patterns or rare outliers? Are analysts focused on prediction,
or identification of predictive factors for intervention? Are
analysts examining a single sequence or comparing across
multiple sets of sequences in aggregate? These are just a few
examples of the wide variety of data and task challenges
which present themselves in event sequence analysis.

These difficult and diverse methodological challenges
have motivated a broad range of recent research activities
which aim to solve one or more aspects of the event se-
quence analysis problem. This has led, in turn, to a prolif-
eration of different visual analysis methods and prototypes,
each of which has distinct capabilities and advantages in
certain contexts. This has resulted in a situation where the
state-of-the-art for event sequence data is often difficult to
discern. The latest research often offers multiple visual ana-
lytics approaches for specific types of challenges. Moreover,
the same solution may be effective at addressing difficulties
that stem from two or more different challenges. Yet in other
cases, open problems remain unaddressed.

The aim of this survey is to provide a comprehensive
review and characterization of the state-of-the-art in visual
analytics research for event sequence data. Through the
collection and analysis of the literature on this topic, we
identify key dimensions of the event sequence visual ana-
lytics design space. We then use those dimensions, as well
as a characterization of different types of event sequence
analysis tasks, to organize existing methods and identify
common approaches to specific targeted problems. More-
over, we identify areas with little prior work which remain
a challenge for future research.

This literature review represents the first (to our knowl-
edge) comprehensive attempt to survey and characterize
event sequence data visual analytics methods. In this way,
this review promises to help researchers understand key
dimensions that unify prior work, how prior research fits
together within this complex design space, and which event
sequence data analysis challenges remain insufficiently ad-
dressed. Moreover, the results can provide value to practi-
tioners as an organized catalog of alternative approaches
that are most appropriate for specific types of event se-



2

quence data problems. We developed a web-based survey
browser 1 to facilitate the exploration of our created taxon-
omy and reviewed techniques.

2 RELATED SURVEYS AND METHODOLOGY

In this section, we first discuss survey papers that are
relevant to this work, and then introduce our methodology
of selecting papers and creating our taxonomy.

2.1 Related Surveys
This section provides an overview of the surveys that are rel-
evant to the visual analysis of event sequence data. Plaisant
et al. [84] proposed a characterization of event sequence data
and summarized eight high-level user tasks. Keim et al. [53]
proposed a definition and an analytical pipeline for visual
analytics, which inspires our formalization of the design
space that we discuss later in Section 3. A prior survey
by Sun et al. [107] generalized visual analytics techniques
according to different data types, among which the review
of visual analytics approaches for temporal data is most
relevant to our work. Our review, by contrast, focuses on
a more specific type of temporal data – event sequence data.
In addition, some scholars attempted to dive into particular
visual forms or visual analytics approaches for a single
analytical task that are partially related to our survey. For
example, Brehmer et al. [2] formalized the design space for
a representative form for visualization of event sequence
data – timeline-based visualizations. Jentner and Keim [47]
reviewed visualization and visual analytics methods for
exploring frequent patterns. Given the broad application
of event sequence data, we also noticed a larger group
of surveys linked to applications where event sequences
are commonly collected, such as social media data [124],
smart manufacturing [140], anomalous user behaviors [99]
and health informatics [89]. Different from existing work
that summarizes techniques for a particular visualization,
visual analytical task, or application related to temporal
event sequence, our work aims to provide a more holistic
overview of the visual analytics approaches for all types of
event sequence data so as to benefit practitioners from a
wider range of applications.

2.2 Survey Methodology and Taxonomy
This survey aims to obtain an overview of existing visual
analytics techniques that are developed for event sequence
data. To make a comprehensive review of existing studies,
we collected relevant papers from visualization journals
and conferences following two main approaches: reference-
driven and search-driven selections. For the reference-
driven selection, we utilized a core set of state-of-the-art
techniques in this topic known to us in advance as a
starting point, and extended the range of work by go-
ing through cited and citing publications. For the search-
driven selection, we went through two rounds of paper
collection. The first round involves a coarse search of event
sequence analysis and visualization techniques from high-
impact conferences and journals in the field of information
visualization and data mining. In particular, we select six
visualization conferences (IEEE VAST, IEEE InfoVis, ACM
CHI, ACM IUI, EG/IEEE EuroVis, IEEE PacificVis), three
visualization journals (IEEE TVCG, IEEE CG&A, Computer
Graphics Forum), four data mining conferences (NeruIPS,
WWW, ACM SIGKDD, ICML), and two journals (IEEE

1. http://eventvis.idvxlab.com/

TKDD, ACM TIST). We used two search queries (”event
sequence” AND ”analysis”; ”event sequence” AND ”visualiza-
tion”) to collect papers broadly, then reviewed the abstracts
and full texts to finalize our selection.

To construct a structured and comprehensive taxonomy,
we formalized a design space for characterizing each visual
analytics approach (discussed in Section 3). In particular,
we leverage the conventional visual analytics pipeline [53]
that revolves around four key components: data, model,
visualization, and knowledge. These four dimensions are
interdependent and form a closed loop to structure the
whole knowledge discovery process supported through vi-
sual analytics. Since deriving knowledge from models and
visualizations can be subjective and difficult to standardize,
we exclude knowledge inference from the scope of our
design space. In addition, user interaction that links the
components throughout the pipeline is also indispensable
in the visual analytics process. These considerations lead
to our final proposed design space with the following four
dimensions: data scales , automated sequence analysis, visual
representations, and interactions. We labeled each work with
its corresponding dimension. Note that event sequence
analysis techniques are only labeled with one of the first
two dimensions. In addition, according to Keim et al. [53],
the choices of analysis methods, visual representations, and
interactions depend on the analytical tasks and application
scenarios. Therefore, we also extracted the motivating ana-
lytical tasks and application domains from each technique.
This gives us a full list of nine analytical tasks, which we
further organized into five categories as outlined in Section
4, and five applications under three major categories as
outlined in Section 5. The design space serves as a fine
categorization where each technique reflects one or multiple
design choices in each dimension. In contrast, the analytical
task or application is a coarse categorization that each
technique often targets one only.

For each analytical task and application, we went
through another round of compliementary paper collection
for visualization and visual analytics techniques with search
queries that combines specific tasks or applications, such
as ”event sequence summarization” AND ”visualization”,
”medical data” AND ”visualization”, etc. The entire selection
process gave us 153 most relevant publications of event
sequence analysis and 148 publications of event sequence
visualization and visual event sequence analysis. We further
refined our selection to 104 most representative and up-
to-date event sequence visualization and visual analytics
studies to discuss in this paper. Additionally, this survey
includes a review of 9 related surveys, 5 event sequence
analysis techniques, and 9 visualization techniques in the
field of causality analysis yet unrelated to event sequence
data, and it refers to 1 book about statistical knowledge,
13 papers regarding the theory of visual analytics, research
challenges, and opportunities for visual event sequence
analysis. A total of 141 papers are covered in this survey.

The remaining survey is organized as follows. We first
propose the design space for characterizing visual analytics
techniques in Section 3. Section 4 elaborates on state-of-the-
art solutions for each analytical task through an analysis of
their corresponding design components within the design
space. Then, Section 5 provides an overview of applications
where event sequence data are commonly observed, serving
as a more direct guide to practitioners of visual analytics.
Finally, we discuss research challenges and opportunities in

http://eventvis.idvxlab.com/
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Fig. 1. The design spaces of visual analytics techniques for event se-
quence data include four dimensions: data scale, automated sequence
analysis, visual representation, interaction technique.

Section 6 and conclude in Section 7.

3 DESIGN SPACE

In this section, we propose a design space for characterizing
the visual analytics techniques we reviewed.As described
in Section 2.2, the four dimensions of design spaces are
motivated by the visual analytics pipeline [53], reflecting
“data”, “model”, “visualization” and “user interactions”
components in the pipeline, respectively. By classifying
existing literature on each dimension, we highlight main
categories in each dimension that are frequently utilized for
designing and building visual analytics techniques for event
sequence data.

3.1 Dimension 1: Data Scales

Our proposed design space starts by identifying what gran-
ularity of data the visual analysis aims to cover. We summa-
rize the following levels of data granularity for any given
event sequence dataset.

Event: Individual events represent the finest gran-
ularity of event sequences. Each event can be char-
acterized by attributes such as event type, time of

occurrence, and duration. Visual analytics techniques often
attempt to drill down to individual events to provide users
with low-level details of the analysis result. For example,
Vistracker [30] identifies anomalous events in trace routes
based on event attributes. Carepre [48] predicts upcoming
diseases based on the historical sequence of medical events.

Subsequence: Subsequences are segments of event
sequences that preserve the temporal order of
events. EventAction [22] uses the number of com-

mon subsequences between individuals to measure se-
quence similarity. MOOCad [73] leverages anomalous fre-
quent subsequences to explore sequence anomalies.

Sequence: An event sequence is the complete record
of events that are performed or experienced by a
sequence entity (e.g., a patient or a customer). The

entire sequence is often analyzed when attempting to get
a complete view of the entity’s experience. In [38], [77],
[138], anomalous entities are detected by analyzing their
corresponding progressions of events. Similarly, Guo et
al. [36] utilize the embedding of each sequence to estimate
the similarity between entities.

Sequence Collection: A collection of sequences are
analyzed when summarizing common patterns in
the dataset or comparing different groups of se-

quences. For example, visual summarization techniques
[39], [81], [83] aim to provide a summary of patterns and
identify entities with common progressions in a collection
of sequences. MatrixWave [139] is designed to compare two
collections of event sequences and analyze their differences.

3.2 Dimension 2: Automated Sequence Analysis

Visual analytics techniques for event sequence data are
incorporated with back-end data mining algorithms to sup-
port complex analytical tasks. Based on a review of event
sequence analysis methods, we identify the following cate-
gories of mining and modeling techniques.

Pattern discovery: Pattern discovery aims to find
frequently occurring patterns and statistically sig-
nificant associations of data samples. In the analysis

of event sequence data, pattern discovery techniques can be
further categorized into frequent pattern mining techniques
and similarity analysis techniques based on different ana-
lytical goals. Frequent pattern mining techniques are used
to uncover common subsequences in the event sequence
dataset. For instance, Perer et al. [81] proposed a visual
analytics system that employs a SPAM-based algorithm to
extract frequent patterns in a collection of event sequences.
Similarity analysis techniques utilize event patterns of each
sequence to quantify the similarity between sequences. For
example, in [22], [122], two different similarity measure-
ments were proposed based on commonness and differences
between events across different event sequences.

Sequence inference: Inference focuses on under-
standing the relationships between the model’s in-
puts and outcomes according to evidence observed

in data [46]. The inference models ensure high interpretabil-
ity and could explore the effect of a change in input on out-
comes. Conclusions derived from inference techniques are
tenable under certain conditions but can be incorrect when
applied to unobserved data. Existing inference techniques
for event sequence analysis mainly include the self-exciting
point process and graphical models. The Self-exciting point
process is a probabilistic model that describes event oc-
currence probabilities over time as influenced by historical
events. For example, Hawkes Process is widely employed to
model sequential data under the assumption that the impact
of the previous event can be approximated by a numerical
integration over time [69], [128]. Based on the numerical
integration, Hawkes Process can infer the relationships be-
tween previous and upcoming events. Some graphical mod-
els, on the other hand, present the conditional dependence
between events with an event correlation graph, such as
Bayesian Networks [1] and Markov Chain [103]. According
to the correlation graph, models can infer how outcomes
will change in response to adjustments in previous events.
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Fig. 2. The most cited papers regarding event sequence visualization and visual analytics techniques grouped by different tasks. Each paper is
labeled by the relevant design elements in the design space. The rows are grouped and colored by dimensions of our proposed design space: DSs
- Data Scales; ASAs - Automated Sequence Analysis Techniques; VRs - Visualization Representations; ITs - Interaction Techniques.

Sequence prediction: While sequence inference
techniques are not capable of drawing correct con-
clusions on unobserved data, sequence prediction

methods are developed to build a reliable model which can
characterize observed data and ensure the model’s general-
ization abilities to forecast unobserved outcomes simultane-
ously [46]. To achieve higher accuracy, prediction techniques
are often more complex and lack interpretability. Event
sequence models are usually designed for specific analytical
tasks, such as classification (e.g., kernel support vector ma-
chines, decision trees) and clustering (e.g., k-means). Neu-
ral network models, especially recurrent neural networks
(RNNs), are also commonly used to model event sequences
due to their inherent sequential structure and superior per-
formance compared to traditional machine learning models.
For instance, CarePre [48] employed attention-based RNNs
to predict upcoming events based on historical events in
sequences, and Guo et al. [38] embedded RNNs into a
Variational Auto-Encoder to detect anomalous sequences in
the dataset. However, users are unable to determine the im-
pact of inputs on outcomes when using RNNs that contain
numerous non-linear combinations of neurons. As a result,
the above methods incorporate visualization techniques to
enhance the interpretability of models.

3.3 Dimension 3: Visual Representations
Existing visual analytics techniques leverage a variety of
visual representations to display event sequence data and
communicate insightful patterns. The visual representations
also determine how events and sequences are organized
and aggregated. We identify the following five categories
of visual representation for displaying event sequence data.

Chart-based visualizations: Visualization charts,
such as bar charts and scatter plots, are commonly
used to display event features and event distribu-

tions in event sequences. For instance, Coco [68] uses a table
to compare event distributions of two different groups of
sequences and a scatter plot to show the number of records
containing particular events or subsequences.

Timeline-based visualizations: Timelines are the
most intuitive visualizations that organize events
of individual sequences successively in temporal

order. Events are generally represented with icons encoded
by color, size, or shape to distinguish events with different
attributes. For example, VASABI [76] visualizes a sequence
as a row of squares colored by event categories.

Hierarchy-based visualizations: In hierarchy-based
visualizations, sequences are aggregated into a tree
of sequences [121], where each node represents an

event placed according to its prefix in the sequence. A
variety of visualization designs can be used to display this
hierarchical structure of sequences, such as treemaps [108],
node-link tree [111], and icicle plots [62], [65].

Sankey-based visualizations: Instead of aggregat-
ing sequences into a tree structure as the hierarchy-
based visualizations, Sankey-based methods orga-

nize sequences into the structure of a Sankey diagram [88]
and aggregate then into a graph. This technique reveals an
overview of transitions that occur between different types of
events. Sankey-based visualizations can be further catego-
rized into two different types of design. The first type is the
directed node-link graph in which events are represented
by nodes and transitions between events are represented by
links [39], [48]. The second type is the traditional Sankey
diagram, in which links are further encoded by width,
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representing the proportions of flow that split and merge
among events [40], [119].

Matrix-based visualizations: Matrix-based visual-
izations are typically used to demonstrate a sum-
mary of event frequency or frequent patterns. For

example, EventAction [22] incorporates an event matrix
to summarize frequencies of events across different time
intervals. Mu et al. [73] applies a matrix-based design to
present lists of frequent activity patterns in each stage of
sequence progression. In addition, a matrix-based design is
also utilized to display frequencies of event transitions. For
example, Zhao et al. [139] transforms the traditional Sankey
diagram into a sequence of matrices to display step-to-step
transitions of web clickstream data.

3.4 Dimension 4: Interactions

Visual analytics systems usually incorporate rich inter-
actions to empower end users with sufficient flexibil-
ity and depth in data analysis. Next, we summarize
seven interaction techniques that are commonly applied
in visual analytics systems for event sequence data.

Filter/query allows users to make domain-specific
data adjustments or selections based on certain con-
ditions, so as to eliminate noisy and irrelevant data

for better analytical performance. The types of filters include
event filters for filtering event types (e.g., [40], [139]), time
filters (e.g., [30], [62]) for narrowing down to a time period
within the sequence, attribute filters (e.g., [15]) for retrieving
a subset of event sequences based on sequence or event
attributes, and pattern filters (e.g., [38], [81]) for querying
event sequences that contain specific subsequences.

Editing enables users to modify event sequences
through adding new events, removing existing events,
editing event order, and editing event duration, which

is commonly employed in what-if simulations of event
sequence predictions. The goal is to interactively explore
the influence of historical events on prediction results. For
instance, in CarePre [48] and RetainVis [60], users can edit
event sequences to understand how changes in individual
events affect the prediction of risks.

Segmentation enables users to split event sequences
into sections and is typically used to narrow the
scope of exploration by focusing on sequence seg-

ments that are shorter than the entire sequence. Meaningful
sequence segments can also indicate event occurrence pat-
terns. For example, in MAQUI [62] and DecisionFlow [32],
users can segment a set of event sequence by user-specified
milestones events to reveal event patterns and correlations.

Alignment refers to arranging multiple sequences
so that they are aligned based on a selected event
or time point. This interaction aims to explore and

compare patterns before and after the alignment point
within a single sequence or across multiple sequences. For
instance, Lifelines2 [115] supports the interactive alignment
of event sequences based on a selected event, so that
users can easily spot precursor, co-occurring, and aftereffect
events. Chen et al. [15] allow both sequence alignment and
adjustment of the temporal scale to illustrate the temporal
distribution of events with respect to a selected event.

Scaling allows analysts to zoom in/out of visu-
alization or inspect data under various granular-
ities. Zoom in/out are commonly used to allow

visualization-level scaling to enhance local details or get an

overall impression. Additionally, some visual analytics tech-
niques [15], [38], [48], [77] also allows a data-level scaling
through abstract/elaborate to accommodate the complexity of
event sequence. For example, Guo et al. [38], [39] allows a
stage-level abstraction and elaboration by aggregating and
expanding events within the same progression stage.

Emphasis facilitates the discovery of interesting pat-
terns [99] through various forms of interactions such
as highlighting, sorting, and layout adjustment. High-

lighting draws user attention through tweaking basic visual
representations (e.g., color, size), which are commonly used
in emphasizing sequence groupings, progression pathways,
and critical events. Sorting emphasizes the ranking of se-
quences or patterns under specific metrics. For example,
Lifeflow [121] allows users to sort progression pathways
by the number of records or average time span. Layout
adjustment enables users to arrange the positions of visual
elements in a meaningful way. For example, Guo et al. [40]
proposed a layout algorithm that arranges sequence clusters
to imply their similarities and allows users to adjust the
similarity threshold to generate different groupings.

Aggregation enables users to interactively merge
event sequences, supporting a more scalable explo-
ration of large-scale, complex event sequences. For

instance, DecisionFlow [32] aggregates sequences with sim-
ilar occurrences of milestone events to enhance the visual
scalability of large-scale events. CareFlow [79] merges se-
quences by common event occurrences to reveal frequently
observed progression patterns.
Each visual analytics technique can be considered as a com-
bination of design decisions in each dimension determined
by the targeting analytical task and application. While the
categorization of design space can help differentiate the
tools in various dimensions and give an overview of their
composition, we consider the analytical tasks and applica-
tions more useful to practitioners as they often have a spe-
cific analytical task and usage scenario in mind. Therefore,
the main body of this survey in the following two sections
(Section 4 and Section 5) is organized around the analytical
tasks and applications.

4 VISUAL ANALYSIS TASKS AND TECHNIQUES

In this section, we introduce analytical tasks that are fre-
quently applied to event sequence data and discuss the
visual analytics techniques are designed for each task. This
includes nine analytical tasks, which we further catego-
rize into five high-level tasks: summarization for uncov-
ering major progression patterns and featuring groupings
of sequence entities; prediction and recommendation for
analyzing observed event sequences to foresee upcoming
events or sequences, or examining how certain interventions
may effect future trends; anomaly detection for identify-
ing rare cases that deviate from the majority of sequence
progressions; comparison for investigating similarities and
differences between event sequences; and causality analysis
for uncovering causal relationships between event types to
promote a better understanding of which event is likely to
occur after another or of what brings about certain changes
to an outcome event. As stated in Section 2.2, the analyti-
cal tasks are summarized after reviewing collected papers,
which should cover most tasks for event sequences.
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Fig. 3. Selected examples of visual summarization techniques. (1) EventFlow [72] visualizes event sequences in both an aggregated tree-like
overview and detailed a timeline display. (2) Outflow [119] visualizes alternative progression paths using color-coded edges that map to patient
outcome. (3) EventThread [40] visualizes the threads derived by tensor analysis as segmented linear stripes, following a line map metaphor. (4)
EventThread2 [39] uses a node-link visual design to provide a higher-level summary of progression patterns of event sequences. (5) MAQUI [62]
applies a hierarchy-based visualization to represent multiple frequent patterns and adopts a timeline to reveal the temporal information.

4.1 Visual Summarization

Summarization of event sequences aims to use intuitive
representations to reveal major progression patterns and
featured groupings of the sequence entities. In many do-
mains such as health informatics [7], [31], [41], [78], [79],
[83], [96], social media [62], [81], and career design [39], [40],
a variety of analytical tasks serve the purpose of generating
summaries, including explicit summarization, inexplicit
summarization, progressional analysis, and clustering.

Explicit summarization techniques generate sequence
groupings through aligning and aggregating common event
types within the sequence. The underlying mechanism is
based on iterating all permutations of the event transitions.
There is a clear correspondence between the summarized
patterns and the raw event sequence. Therefore, the sum-
marized patterns are explicit and can be easily interpreted.
Existing techniques adopt various visualization approaches
to display event sequences, such as timeline-based [7], [54],
[63], [83], [115], [135] and hierarchy-based [72], [92], [108],
[121] visualizations. Timeline-based visualizations are fre-
quently adopted to emphasize temporal ordering of events.
For instances, LifeLines [83] and its variant [115] leverage
timeline-based visualizations to display the temporal distri-
bution of events in varying time granularities. Hierarchy-
based visualizations, such as tree-map and icicle plot, orga-
nize the progression of events into a hierarchical structure
to emphasize more on the branching of sequences. Event-
Flow [72] aggregates sequences into icicle plot, and display
individual sequences with a list of timelines (Fig. 3(1)).

Inexplicit summarization techniques usually leverage
data mining techniques to extract frequent event patterns,
which only provides a partial view of the raw event se-
quences. Due to the loss of context, there is no explicit
correspondence between the discovered pattern and raw
event sequences. Existing works that serve the purpose of
inexplicit summarization mainly fall into two categories:
query-based techniques and mining-based techniques. Query-
based techniques [28], [57], [111], [119], [122], [136] enable

analysts to create complex queries to extract event sequences
of interest. For instances, in COQUITO [57] and CAVA
[136], analysts can express complex queries for iterative
cohort construction. In Outflow [119], alternative clinical
pathways within EMRs are visualized using a Sankey Di-
agram, with the color of paths representing the patient out-
comes (Fig. 3(2)). mining-based techniques leverage advanced
sequential pattern mining algorithms could extract mean-
ingful insights from complex event sequences [61], [64], [65],
[66], [81], [82]. For instances, in Frequence [81] and its vari-
ant [82], large scale EMRs data are represented by a set of
extracted frequent patterns. The authors employed Sankey
Diagram to reveal the correlations between treatment pat-
terns and the associated color-coded outcomes. However,
extracted patterns do not always correspond to important
or meaningful information within the data. Therefore, Law
et al. [62] proposed MAQUI, which interweaves quering
and mining-based techniques to allow interactive querying of
frequent patterns. The authors applied hierarchy-based and
timeline-based visualization to represent frequent patterns
and temporal information, respectively (Fig. 3 (5)). Simi-
larly, Chen et al. [15] combines querying and a mining-based
method by using Minimum Description Length Principle
to extract informative patterns from event sequences with
minimal information loss. Each extracted pattern is showed
by timeline-based visualization.

Progression analysis aims to uncover the evolution of
events during a period of time. Most of the aforementioned
techniques produce highly summarized results, but fail to
show important low-level event details (e.g., single event
features) which can help in the crucial task of semantic inter-
pretation of the discovered patterns [40]. Visual progression
analysis techniques, such as [14], [32], [33], [39], [40], [80],
have been introduced to reveal time-evolving patterns of
latent progression stages. For instance, in DecisionFlow [32],
analysts can use a milestone-based approach to retrieve
progression patterns of interest, and visualized them in a
hierarchy-based visualization. EventThread [40] has been
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introduced to summarize latent sequential patterns within
a large-scale sequence collection. This technique employs
a clustering algorithm to group the summarized patterns
into various categories at different stages. A line map is
employed to clearly illustrate the summarized latent pat-
terns (Fig. 3(3)). Guo et al. further enhanced this technique
with an unsupervised progressions analysis algorithm and
a visual progression analysis tool, EventThread2 [39], to
identify semantically meaningful progression stages. This
technique solved the time scale limitation of EventThread
and proposed a new visual design to demonstrate the stage-
based patterns. It combines node-link visualization (Fig. 3
(4)) of sequence clusters at each stage and timeline-based
visualization of individual sequences to support multi-
granular analysis.

Clustering is the process of finding sequence-wide sim-
ilarities to achieve sequence groupings. In the clustering
analysis of event sequences, a broad range of visual ana-
lytics techniques has been developed to empower analysts
working with three types of event sequence data, including
temporal event sequences, spatiotemporal event sequences
and microarray sequences. For temporal event sequences,
clustering can be informed by sequence characteristics such
as event types and sequence attributes. DICON [3] segments
a collection of event sequences into groups based on entity
attributes (e.g., age, gender). Each multi-dimensional cluster
is revealed in a hierarchy-based visualization, which allows
analysts to understand the event distributions in different
groups. Cadence system [34] offers a scatter-plus-focus vi-
sualization design that supports the interactive hierarchical
exploration of the space of event type groupings. This sys-
tem adopts scented navigation cues to help users navigate
complex hierarchies, as well as interactive bar charts and
histograms that support additional constraints in categorical
and continuous attributes of the target groups. [76], [93],
[112], [118] are utilized to cluster individual entities (e.g.,
works, online users) based on behaviors. VASABI [76] sum-
marise user behaviors by extracting their common tasks,
and then identifies the groups of users based on user behav-
iors. This technique facilitates interactive analysis of user
clustering through a hierarchy-based visualization.

The clustering analysis of spatiotemporal event se-
quences has been explored in many efforts, such as [45], [58],
[90], [110], [131]. Spatiotemporal visual analysis of activity
diary data is visualized through VISUAL-TimePAcTS [110]
on a coordinate plane of time and space. Robinson et al. [90]
developed STempo, a geovisualization application to facili-
tate the exploration of spatiotemporal patterns within event
sequence data, in terms of time, geography, and content.
Moreover, studies have also introduced visualization tools
to cluster microarray sequences [44], [95], [98], [102]. Seo
and Shneiderman [98] created the Hierarchical Clustering
Explorer that offers a dendrogram and two-dimensional
scattergrams, and their dynamic query controls allow users
to choose which clusters to display. This model is espe-
cially suitable for bioinformatics and microarray data. More-
over, SequenceJuxtaposer [102] facilitates the comparison
of biomolecular sequences using a visualization technique
called “accordion drawing”.

In conclusion, visual summarization techniques save
user effort by capturing a broad view of event sequence
data. To allow for interactive exploration of visual sum-
marization from different perspectives, the aforementioned
techniques commonly employ the following interaction

techniques within their interfaces: filter/query for retrieving
information of user interest, scaling for multiple scales visu-
alization, alignment for aligning event sequences on selected
events or time points, and sequence editing for modifying
sequences during analysis.

4.2 Visual Event Prediction & Recommendation
There is a growing need for predictive analysis of event
sequence data, which leverages historical events and mak-
ing predictions about the future. It is especially useful in
supporting practitioners making decisions, such as treat-
ment plans, marketing interventions, financial investments,
etc. Existing visual predictive analysis techniques can be
broadly categorized into prediction techniques, recommen-
dation techniques, and interpretation techniques.

Prediction techniques for event sequences have been
proposed to predict the next event in a sequence based
on historical events. For instance, medical researchers and
physicians can use this type of technique to understand the
potential outcomes of patients under different treatments.
CarePre system [48] leverages attention-based RNNs to
predict the risk of a patient being diagnosed with certain
diseases in the future. In this system, a patient’s histori-
cal events are displayed in a timeline-based visualization
(Fig. 4(2)). Users are allowed to modify these events (e.g., by
removing, moving, adding, or adjusting event durations) to
test the impact of historical events on predicted outcomes.
Guo et al. [37] also employs Recurrent Neural Networks
(RNNs) to predict future activities, and review the most
probable predictions and possible alternatives in a circular
glyph design (Fig. 4(4)). The color of the first outer ring
represents the top prediction for a group of records. Then,
depending on the granularity of the analysis, alternative
predictions are represented as rings and added to glyph
from the inside out.

Recommendation techniques provide reliable sugges-
tions on user actions to help achieve certain goals. For exam-
ple, students can adopt this type of technique to understand
their future career development and find an academic plan
that suits their desired goals. Du et al. [22], [23] introduced
two career path recommendation techniques that provide
suggestions and potential outcomes by summarizing the
outcome of similar users. In EventAction [22], all of the
records that similar to the target record are displayed in a
list of calendar views (Fig. 4(1)). Recommended actions are
highlighted in the calendar with green and allow users to
add into their plans for exploration.

In the past few years, deep learning algorithms have
demonstrated significant improvements over traditional ap-
proaches in predictive analysis. For event sequence data,
Recurrent Neural Networks (RNNs) are frequently adopted
to foresee the upcoming events or sequences, or exam how
certain interventions may affect the future trends. However,
interpretability is recognized as a primary challenge of deep
learning approaches. To address this issue, recent studies
have introduced interpretation techniques in visual pre-
dictive analysis to interpret the internal mechanisms of a
prediction model [56], [60], [71], [104]. For instance, Retain-
Vis [60] is a hybrid visual technique for gaining insight into
how RNNs model EMR data within the context of diagnosis
risk prediction tasks. This technique interprets the rela-
tionship between patient records and predicted risk scores.
Specifically, patients’ medical records and their predicted
risk trajectory are visualized in two parallel line charts
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Fig. 4. Selected examples of visual prediction & recommendation techniques. (1) EventAction [22] uses a calendar view to show the temporal
information of event sequences. (2) CarePre [48] reveals the medical record of a patient in a timeline-based visualization, and similar patients’
medical event sequences are aggregated into a Sankey-based visualization. (3) In RetainVIS [60], predicted risk trajectories are revealed in parallel
line charts (middle), and the risk contributors for the patients are displayed in a bar chart (bottom). (4) [37] visualizes the top prediction, alternatives,
and their uncertainties in a circular glyph design.

(Fig. 4(3)), which allow users to understand the progression
of predicted diagnosis risks and why such predictions are
made. Also, when users hover over the x-axis, they can see
the updated contribution scores of medical events, which
represent the importance or contribution of an event to
the predicted result. Similarly, LSTMVis [104] focus on the
visual analysis of hidden features in RNNs, it allows users
to explore hypotheses about hidden state dynamics.

Visual prediction and recommendation techniques con-
tribute to decision-making in many domains. In order to
allow users to explore the data from different perspectives,
the aforementioned techniques commonly employ the fol-
lowing interaction techniques within their interfaces: fil-
ter/query for retrieving information of users interest, emphasis
for adjusting attributes of data to reveal interesting patterns,
and sequence editing for including a new event or a new
feature into the prediction model.

4.3 Visual Anomaly Detection
Visual anomaly detection for event sequences aims at iden-
tifying rare cases that deviate from the majority of the
sequence progressions. It has been applied in many applica-
tions, such as social media [4], [6], [138], computer systems
[73], [97], [129], clickstream [30], [38], [77], and smart factory
[43], [123], [130]. As the forms of anomalies vary from task to
task, existing visualizations for anomalies in event sequence
data can be categorized by data scales, including anomalous
events visualization, anomalous frequent patterns visual-
ization, and anomalous sequences visualization.

Anomalous events visualization aims to distinguish
anomalous events from normal events within the context
of event sequences. Existing techniques leverage various
visualization methods to display anomaly events [8], [30],
[38], [74], [77], [130]. For instance, EventThread3 [38] detects
redundant and missing events within anomalous sequences
by comparing anomalous sequences with the inferred ex-
pected normal progressions (Fig. 5(4)). The anomalous
events are displayed in a line of circular glyphs with the size

encoding the level of abnormality, which can help analysts
understand why the sequence is identified as an anomaly.
Xu et al. [130] extended Marey’s graph to reveal the work-
ing status of a production line. This design visualizes the
moving traces and processing times of individual products,
improving users’ understanding of the overall performance
of the production line, the anomalous events, and the causes
and effects of the anomalies.

Anomalous frequent patterns visualization is utilized
to help users perceive the anomalous frequent patterns that
contribute to sequence abnormality. MOOCad [73] is de-
signed to detect anomalous learning patterns within MOOC
data (a set of online learning activities sequences) (Fig. 5(2)).
To facilitate anomaly detection and reasoning, the large-
scale learning sequences are clustered into various groups
at different stages. The authors employed a Sankey-based
visualization to aggregate the stage segmentation results. A
matrix-based visualization is also employed to indicate the
behavioral patterns of each student group within the stage,
which facilitates the comparison of patterns across stages,
between groups and individual paths.

Anomalous sequences visualization helps users detect
anomalous sequences within a collection of sequences, and
uncover the deviation of anomalous sequences from nor-
mal sequences.For instance, Zhao et al. [138] proposed a
flexible timeline visualization to discover rumor-spreading
processes between Twitter users (Fig. 5(3)). The retweeting
sequences are visualized with a design of packed circles,
each representing a participating user. In order to intuitively
display the abnormality of sequences, the authors designed
a circular glyph for each retweeting sequence which sum-
marizes important metrics such as overall abnormality, con-
textual polarity, scale, and temporal information. Similarly,
Cao et al. developed TargetVue [6] to analyze anomalous
behaviors of Twitter users. This technique analyzes se-
quences of retweeting behaviors and identifies anomalous
users via an unsupervised learning model. The behaviors
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Fig. 5. Selected examples of visual anomaly detection techniques. (1) [77] combines a rectangle glyph design and a timeline-based visualization to
reveal anomalies within event sequences. (2) MOOCad [73] employs a Sankey-based visualization to display an overview of the stage segmentation
results, and it uses a matrix-based approach to indicate the content patterns of each group within the stage. (3) FluxFlow [138] visualizes anomalous
retweeting sequences in a packed circles design. (4) EventThread3 [38] displays anomalous sequences in a line of rectangular nodes ordered by
time of occurrence (top). The authors use a circular glyph (middle) to visualize the anomalous events within sequences.

of suspicious users are summarized by three glyph designs
(Fig. 9(4)), presenting the users’ communication activities,
features, and social interactions, respectively. Nguyen et al.
[77] proposed a visual analytics approach that helps identify
and analyze unusual action sequences (Fig. 5(1)). Actions in
each sequence are visually summarized in a compact glyph
to help analysts find anomalous sequences, with the length
and color saturation of glyph representing sequence length
and anomaly scores, respectively. Each individual anoma-
lous sequence is also visualized in a timeline visualization,
where each event is represented by a rectangle colored by
event type. Similar designs are also employed in [30] and
[38]. Guo et al. [38] further employed MDS projection of
the sequences in the dataset to give an overview of the
distribution of anomalous sequences.

To allow users to interactively explore data from differ-
ent perspectives, the aforementioned techniques commonly
employ the following interaction techniques: filter/query for
retrieving information of users interest, emphasis for adjust-
ing attributes of data to reveal interesting patterns, scaling
for multiple scales visualization, and alignment for aligning
sequences on selected events or time points.

4.4 Visual Comparison
Visual comparison is for investigating the similarities and
differences between event sequence data. A variety of vi-
sual comparison techniques have been proposed to solve
real-world problems in many domains such as career path
planning [22], [24], clickstream analysis [77], [139], health
informatics [36], [48], [68], and general event sequence
comparison [38], [122]. We classify prior visual comparison
techniques for event sequences based on the granularity
of compared targets, including comparison of individual
event sequences, comparison of sequential patterns, and
comparison of sequence collections.

Comparison of individual event sequences aims to
identify disorder, missing or redundant events, as well as
differences in event attributes (e.g., timestamp, event dura-
tion, etc.) in a target sequence compared to a base sequence.
To facilitate interpretation of compared results, researchers
adopted juxtaposition design [122], superposition design [48],

and hybrid design [36], [38] to clearly visualize the similarities
and differences between sequences. For instance, Similan
[122] shows the similarity of events within two similar
sequences via juxtaposition design. Each event sequence is
visualized in a binned timeline (Fig. 6(4)), with the base
sequence placed beneath the target sequence for explicit
comparison. In CarePre [48], superposition design are utilized
to compare the predicted medical record with records of
similar pre-existing patients. In the most recently published
visual comparison technique, Guo et al. [36] searched simi-
lar medical records of a target sequence and applied hybrid
design to convey the differences between the target record
and its similar records. This technique uses explicit encoding
to display the dissimilarity over time, and it uses superposi-
tion design to support analysts manually compare the target
sequence with similar records sequences.

Comparison of sequential patterns aims to investigate
the similarity of sequential patterns within two event se-
quences. Typical applications include comparing frequent
patterns in log files [77], [87], and understanding behavioral
patterns in career paths [22], [24]. For example, EventAction
[22] compares the sequential pattern between students to
retrieve students that are similar to the target student. It
further leverages a juxtaposed calendar view to compare
events in the sequences. Nguyen et al. [77] adopted a super-
position design to display sequential patterns of the abnormal
sequences. Du et al. [24] support both explicit encoding and
juxtaposition to demonstrate the differences of similar se-
quences (Fig. 6(1)). Specifically, when comparing the target
record with the entire dataset, Du et al. summarized the
metrics for determining the similar records in a hierarchical
tree, where the similarities and differences are explicitly
encoded. For a detailed inspection, all records and common
temporal patterns are visualized in the calendar views, so
that users can juxtapose any two sequences of interest to
investigate the similarities and differences between them.

Comparison of sequence collections aims to find differ-
ences between two sets of event sequences in terms of se-
quence structure, event attribute, and temporal information
[67]. For instance, CoCo [68] leveraged statistical analysis
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Fig. 6. Selected examples of visual comparison techniques. (1) [24] summarizes the criteria values of similar records as a hierarchical tree. Each of
the records and common temporal patterns among the similar records are visualized in the calendar view. (2) In CoCo [68], a combination of medical
events is visualized in a timeline, where colored triangles represent medical events. (3) MatrixWave [139] visually compares two web clickstreams
in a matrix-based visualization. (4) Similan [122] visualizes each event sequence in a binned timeline. The paired events are connected by lines.

to compare the attributes of two distinctly defined cohorts,
adopting explicit encoding to convey an overview of the
differences between the two cohorts (Fig. 6(2)). MatrixWave
[139] utilized a novel matrix-based visualization to compare
the traffic of two web clickstream datasets (Fig. 6(3)). It
applied superposition design to display two event sequence
datasets in one visualization and used explicit encoding to
show the differences in the amount of traffic between pair-
wise steps of two clickstream datasets.

In summary, visual comparison techniques can save an-
alysts’ efforts to explore the differences between two event
sequences or two groups of event sequences. To facilitate
interactive analysis, the aforementioned techniques adopt
filter/query for retrieving information of users interest, scal-
ing for multiple scales visualization, alignment for aligning
sequences on selected events or time points, and emphasis for
adjusting attributes of data to reveal interesting patterns.

4.5 Visual Causality Analysis
The problem of learning causality in data has attracted
much attention in data mining community over the past
years. To facilitate interactive exploration and help with
better understanding of complex causal relations, many
visualizations and visual analytics techniques have been in-
troduced to support causality analysis. However, most prior
researches focus on analyzing causalities in non-temporal
multivariate data, while the visual causality analysis for
event sequence data is still under explored. In this section,
we review existing visual causality analysis techniques for
multivariate data and event sequence data. Traditional visu-
alization for displaying causality includes Directed Acyclic
Graph (DAG) and Hasse diagram [55], which are com-
monly applied and easy to understand. However, when
the number of variables increases, traditional visualizations
may suffer from the exponential growth of edge crossing.
To address this issue, Elmqvist et al. proposed Growing
Squares [26] and Growing Polygons [27], which substitute
nodes in DAG with color-coded squares and polygons to
provide an overview of influences on each event in place

of the links. Furthermore, they incorporate animations to
present the temporal ordering of causality. Kabada et al. [51]
introduced a set of animations following Michotte’s rules of
causal perception [70] to imply causal semantics, such as
causal strength, amplification, dampening, and multiplicity
in causality visualization.

To further facilitate interactive causality analysis and in-
terpretation, recent studies attempt to develop visual causal-
ity analysis systems that incorporate automatic causality
analysis algorithms with causality visualizations. Chen et
al. [9] proposed a workflow for visual causal analysis,
which leads to a number of visual analytics systems that
are designed to support interactive analysis and reasoning
of causation. For example, Zhang et al. [137] introduced a
visualization tool that analyzes causality between numerical
and categorical variables in multivariate data and utilized
force-directed graphs to display the causality. ReactionFlow
[20] uncovers the causal relationships between proteins and
biochemical reactions in biological pathways. The causal
pathways are organized into a Sankey-based structure to
emphasize the downstream and upstream nature of the
causal relationships. Want et al. [113] presented a visual
analytics tool that allows analysts to edit the causality anal-
ysis result according to their domain expertise. They further
enhanced this techniqiue in [114] with a path diagram
visualization to better expose the causal sequences.

As prior efforts mainly focus on the causal analysis
of multivariate data where no temporal information is in-
volved, a few most recent techniques have been proposed
to analyze causal relationships among events in event se-
quence datasets [18], [49], [127]. Causality Explorer [127]
enables users to explore, validate, and apply causal relations
in high-dimensional event sequence data. The tool provides
an uncertainty-aware causal graph visualization to present
a large set of causal relations inferred from event sequences.
SeqCausal [49] recovers the Granger causality of events
within a collection of event sequences based on Hawkes pro-
cess modeling, it leverages a set of visualizations and inter-
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Fig. 7. The selected papers regarding visualization and visual analytics of event sequences in different application domains. Each paper is labeled
by relevant analysis tasks and design components in the design space. The rows are grouped and colored by dimensions of our proposed design
space: DSs - Data Scales; Ts - Analysis Tasks; VRs - Visualization Representations; ITs - Interaction Techniques.

actions to explore, interpret and verify complex causalities
in high-dimensional and heterogeneous event sequences.

5 APPLICATIONS
In this section, we introduce application areas where event
sequence data are commonly observed and discuss the
analytical challenges that are specific to each application
domain. This includes five applications, which we further
classify into three high-level fields: health informatics for
electronic medical records; internet applications for general
behavioral data collected from websites and computer sys-
tems, and industry 4.0 for manufacturing data. As stated in
Section 2.2, the applications are gathered after a comprehen-
sive paper search in major data mining and visualization
journals and conferences, which should cover most event
sequence applications. While data from other application
domains may also be easily transformed to the form of
event sequence data (e.g., segmenting continuous time-
series data and traversing graph data to generate discrete
event sequences), they are out of the scope of this paper. In
this section, we set our focus on applications only with data
that are naturally perceived as event sequences.

5.1 Health Informatics
Electronic health records (EHRs) or electronic medical
records (EMRs) represent a typical form of event sequence
data. The record of each patient over the course of a
clinical process can be considered as an event sequence,
with each event representing a clinical event, such as a
diagnostics event, taking lab tests, doing surgery or taking

medicine. With ample medical event sequence data and
domain knowledge, physicians and medical researchers can
extract new knowledge, quantify the effects of changes in
care delivery, and potentially guide the formation of best
practice guidelines. For example, medical experts are often
interested in identifying the commonness in clinical path-
ways among different patients, so as to extract universal
clinical guidelines that are applicable to cohorts with certain
characteristics(e.g., treatment customization). Besides ana-
lyzing historical data, predictive analytics are also found to
be useful in medical applications, such as predicting disease
outcomes and complications, so as to help doctors adjust
their treatment plans beforehand. However, EHRs can be
difficult to analyze due to the numerous set of unique event
types and the subsequent heterogeneous sequence progres-
sions. EHRs of patients diagnosed with chronic diseases also
suffers from large time span and sequence length. A variety
of visual analytics solutions have been proposed to address
these challenges, which we summarize in the following
based on analytical tasks,including cohort analysis [3], [39],
[40], [57], [59], [67], [136], outcome analysis [32], [34], [79],
[91], [116], [119], [121], and progonsis analysis [48], [60].

Cohort analysis is a common approach used to uncover
correlations between a specific disease risk and the under-
lying attributes of patients within the cohorts [136]. Medical
researchers can construct a cohort of patients based on a
medical event (e.g., diagnosis, treatment), the attributes of
patients (e.g., gender, age), and the patterns of individual
sequences (e.g., symptoms progression, treatment progres-
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Fig. 8. Selected examples of visual techniques for health informatics. (1) COQUITO [57] uses a hierarchical tree map and bar charts to provide an
overview of statistical information of cohorts defined by users. (2) Composer [91] plots the outcome score trajectories of different procedures in a
line chart. (3) CAVA [136] uses a stacked bar chart, a pie chart, and a hierarchical tree map to represent the age, gender, and diagnosis distributions
of a cohort, respectively. Both the calculated risk scores and event progressions within the cohort are visualized by color-coded edges.

sion). Suppose a medical researcher wishes to understand
the exposure factors for lung cancer. He can gather the
answer by analyzing common attributes within a cohort
of lung cancer patients or by measuring the differences
between cohorts with or without lung cancer. Following this
idea, existing visual techniques for cohort analysis empha-
size one of two strategies: cohort summarization [39], [40],
[86], [136], or cohort comparison [3], [57], [59], [67], [85].

Cohort summarization techniques, such as CAVA [136]
and Chronodes [86], visually summarizing informative pat-
terns within a cohort and uncover the common exposure
factors for a disease. CAVA [136] combines chart-based and
hierarchy-based visualization to represent the attribute dis-
tributions of a cohort (Fig. 8(3)). Then, to further investigate
exposure events in the cohort, each patient was assigned
a hospitalization risk score based on their medical history.
Both the calculated risk scores and event progressions are
visualized by color-coded edges, analysts can intuitively
understand how different event progression pathways lead
to different hospitalization risk scores and which medi-
cal events have higher risks. Moreover, in EventThread2
[39], the clustered medical event sequences and common
sequential patterns (e.g., typical care plans) of a cohort
are visualized in a Sankey-based visualization and a node-
link visual design respectively (Fig. 3(4)). User can inspect
common sequential patterns of a cohort with the goal to
explore those medical events that affect further progression.

Cohort comparison measures differences between two
cohorts of patients to determine exposure factors of a condi-
tion such as a disease or death. COQUITO [57] helps users
interactively construct two cohorts and explore exposure
events for a disease. It uses a hierarchical treemap and
multiple bar charts to provide an overview of statistical
information about the cohorts (Fig. 8(1)). Then it leverages
PARAMO [75] to compare two cohorts and determine if

the constructed cohorts carry exposure events for a dis-
ease. CoCo [67] is a visual comparison technique (Fig. 6(2))
that measures the differences between two cohorts under
various differentiating metrics. Users can select metrics of
interest, such as the most differentiating event subsequences
between two cohorts, to explore the medical events or
patterns that may influence the incidence of a condition. In
CoCo, each row displays the difference between two cohorts
and the medical patterns of cohorts are visualized by a
timeline-based design. A circle marker is placed horizon-
tally between two cohorts to display the difference between
the values and in the direction of whichever cohort’s value
(e.g., death rate, survive rate) is higher.

Outcome analysis studies the end results of different
medical progressions (e.g., symptom progressions, treat-
ment progressions) with the goal of facilitating informed
decision-making about diagnosis and treatment options.
Existing works, such as Outflow [119] and Frequence [81],
reveal the medical progression paths in a Sankey-based
visualization to uncover the outcomes of different proce-
dures. More specifically, Outflow [119] aggregates medical
event sequences from a cohort of patients and visualizes
alternative progression paths using color-coded edges that
map to patient outcomes (Fig. 3(2)). Similarly, in a series of
efforts proposed by Perer et al. [79], [81], [82], the authors
extracted frequent progression pathways of a cohort and
used a Sankey-based visualization to display them while
providing context on which care plans were successful and
which were not. These techniques provide an overview
of the progression pathways within a cohort, and thus
help users understand which factors, medical pathways,
or other structures are most associated to the outcome of
interest. Nevertheless, as users are not allowed to inter-
actively build the cohorts in some outcome analysis tech-
niques, the analytic capability of these techniques could be
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hugely impacted when analyzing a sequence collection of
different patients. To overcome this issue, DecisionFlow [32]
leverages a milestone approach to support users in defining
a cohort by highlighting patients with a specific outcome
(e.g., a disease). Composer [91] enables users to interactively
explore the outcomes under different cohorts and treatment
plans. This technique employs PROMIS (Patient-Reported
Outcomes Measurement Information System) to automati-
cally evaluate the outcome scores of a patient under user-
defined treatments, and plots the outcome score trajectories
in a line chart (Fig. 8(2)). Medical researchers can plot
outcome trajectories of different treatments in one chart to
determine the optimal treatment for a cohort of patients.

Prognosis analysis predicts the risks of a patient being
diagnosed with certain diseases in the future based on the
patient’s medical history. A series of deep learning–based
visual prognosis techniques, such as [16], [48], [56], [60],
have been introduced to make prognosis analysis and inter-
pret the results. For instance, [56], [60] implement RNNs to
predict the current and future states of a patient. RetainVis
[60] enables users to modify individual sequences of medi-
cal events (e,g., add or remove medical events, modify visit
period) to experiment with how predicted risk changes with
the historical record. The predicted trajectory and historical
medical event sequences are visualized in two parallel line
charts (Fig. 4(3)). Users are able to observe correlations
between medical event sequences and prediction risks, and
understand why such predictions are made. CarePre system
[48] can also predict the risk of a patient being diagnosed
with a certain disease and estimates the most influential
treatments for a patient based on historical medical records.
The patient’s historical events are visualized in a timeline-
based visualization (Fig. 4(2)), and users are allowed to
modify these events (e.g., removing, moving, duration ad-
justment, adding) to test with different predictions. Clin-
icians can create multiple edited sequences to compare
the predicted results under alternative treatments, so as to
understand the impact of different treatment options.

5.2 Internet applications
In various internet applications, the activities of users and
devices can be recorded as individual event sequences.
For instance, social media data contain sequences of times-
tamped activities (e.g., posting or commenting) for specific
users that are recorded over time. Similarly, clickstream data
collected from e-commerce websites record how visitors
operate and navigate through a website, and this data can
be represented as sequences of timestamped events (e.g.,
visiting a product page, purchasing a product) generated
by visitor actions. Additionally, the system logs collected
from a computer system can also be represented as temporal
event sequences of device conditions (e.g., usage, temper-
ature, workload). In this section, we provide a review of
the visual techniques that have been developed for event
sequence data retrieved from social media platforms, e-
commerce websites, and computer systems.

5.2.1 Social media
On social media platforms such as Twitter and Facebook,
user activities can be recorded as event sequences. Each
sequence may record the temporal activities of a user over
time, where each event represents an online activity such
as posting or commenting. Analyzing event sequences on
social media platforms could help sociologists understand

the underlying behavioral patterns behind the spread of
information. For example, the spread of a rumor may start
with increased reposting interactions with an influential
user. Such users can be identified through detecting anoma-
lous sequences to stop the spread of misleading information
at an early stage. In contrast to EHRs, sequences collected
from social media platforms generally contain a limited
number of event types (i.e., user interactions). However, the
contextual information of each event, such as the content
of a post and the underlying social network among users
adds additional complexity to the data and also needs to be
considered when analyzing behavioral patterns. Moreover,
the large scale of users in social media platforms also leads
to great difficulty in sequence analysis. Existing efforts have
proposed a range of visual analytics techniques to help yield
insights about various types of user behavior, including
collective behaviors [13], [62], [81], [109], [125], [132], [138]
and ego-centric behaviors [4], [6], [12].

Collective behaviors refer to activities conducted by a
temporary and unstructured group of people. On social
media, collective behaviors are formulated by groups of
social media users through the processes of spreading in-
formation and human mobility. To study these collective
behaviors and identify behavioral patterns, various visual
analytics techniques have been proposed: [5], [13], [106],
[109], [138] analyze the behavior of spreading information, and
[62], [81] are developed to study human mobility. Reposting
process refers to how information spreads across space and
time on social media platforms. Google + [109] interweaves
node-link diagrams and circular map metaphors to visualize
message spreading paths. Analysts can easily capture the
traces of diffusion between users and identify the impor-
tance of a message by its size and diffusion path. Chen
et al. [13] used a map metaphor to symbolize the repost-
ing process in a spatial context (Fig. 9(1)). The diffusion
structure is visualized using various link metaphors such
as rivers, routes, and bridges. This technique highlights
the influence of key players, and enables analysts to ex-
plore how key players promote the evolution of topics and
enlarge the influence of the source message. Zhao et al.
[138] proposed a flexible timeline visualization to reveal
the rumor-spreading process among Twitter users. Some
studies trace the spatiotemporal information of diffusion
pathways to uncover how information is spread on a global
scale [5], [106]. For example, Cao et al. [5] summarized the
temporal trends, the social-spatial extent, and community
response to a topic with a sunflower metaphor. The original
tweets are placed at the center of the circle and linked
with geo-groups (users from the same country) once users
in these groups repost the original tweets. The retweet-
ing activities are displayed as a sequence of color-coded
glyphs moving along pathways that indicate the timing and
sentiments of the retweets. Besides the reposting process,
another important collective behavior is human mobility. The
spatiotemporal event sequences retrieved from social media
platform, like Foursquare, have recently been used to un-
cover user mobility patterns and predict mobility decisions.
For example, advertisement companies can investigate the
mobility patterns of people, such as when and where they
go to work, to optimize their advertising strategies. Some
visual analytics techniques that leverage pattern mining
algorithms have been used to explore common mobility
patterns of users, such as [62], [81]. MAQUI [62] support the
interactive exploration of data collected from Foursquare to
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Fig. 9. Selected examples of visual techniques for Internet applications. (1) R-Map [13] uses a map metaphor to symbolize the reposting process
in a spatial context. (2) CloudDet [129] combines a glyph design and a stacked line chart to monitor the performance of a computer system. (3)
PeakVizor [10] encodes each interaction peak by a glyph in an overview, and the spatial-temporal information of the peaks and the correlation
between the peaks are visualized in two additional views. (4) TargetVue [6] visualizes the behaviors of suspicious users in three glyphs that present
the user’s communication activities, features, and social interactions respectively.

uncover the frequent mobility patterns of users.
Egocentric behaviors refer to activities conducted or

influenced by a user. An egocentric perspective enables a
closer analysis of individual behaviors and thus provides
more detailed behavioral patterns [12]. For instance, Cao
et al. [4] proposed Episogram, an egocentric representa-
tion for visualizing individuals’ interaction histories (e.g.,
posting or reposting content). Episogram visualizes each
interaction thread using a vertical line on a timeline and
uses a glyph design to represent interaction events among
users. Building upon preceding works, Cao et al. developed
TargetVue [6] to detect and visualize users with anomalous
behaviors on Twitter. TargetVue detects anomalous users via
an unsupervised learning model and visualizes the behav-
iors of suspicious users in three glyphs representing the
communication activities, features, and social interactions,
respectively (Fig. 9(4)). Chen et al. [12] proposed a map-
based visual technique to summarize the historical diffusion
traces initiated by a central user. Users who participated in
reposting one central user’s post are visualized as hex nodes
whose color and size encode the user’s behaviors and roles.
These users are grouped into different regions on the map
and linked with the egocentric user in the form of a social
network, helping analysts trace how information reaches
and diffuses from the user.

5.2.2 E-commerce
Clickstream data collected from e-commerce websites record
how visitors operate and navigate through websites. A vis-
itor’s online activity can be recorded as an event sequence,
in which each event represents a single online activity (e.g.,
visiting a product page). The increasing availability of such
event sequence data permits analysts to extract valuable
insights into website design and commercial activities. For

instance, these meaningful insights can help companies
plan efficient marketing strategies and make more precise
advertising and promotion to customers. Generally, online
activities on different web pages are considered as different
event types, so that an event sequence of a web visitor can
be considered as a description of how the user navigates
through web pages. When analyzing activities in large web
applications, the main difficulty usually lies in the large
space of web links that users need to explore. The diverse
types of online activities (e.g., click, scroll, mouse move)
further increase the complexity of the data. Existing visual
techniques have been introduced to explore frequent visit-
ing traces [65], [66], [133] and user behavior patterns [10],
[29], [35], [42], [73].

To facilitate the understanding of frequent visiting traces,
Zgraggen et al. [133] proposed (s|qu)eries to visualizes reg-
ular patterns of clickstream data. Moreover, Liu et al. [66]
extracted frequent browsing paths from clickstream data
and visualized them in a funnel-based visualization. As
frequent patterns do not always correspond to important or
meaningful information within data, CoreFlow [65] lever-
aged a tree-based visualization to facilitate branching pat-
tern exploration for browsing paths.

Analyzing clickstream data can help e-commerce com-
panies explore user’s behavior and optimize their business
plans. This idea has been extended to online education
platforms to analyze the learning behaviors of students [10],
[11], [35], [42], [73]. For instance, PeakVizor [10] analyzes
students’ interaction activities to understand how students
respond to video materials. For example, an unexpectedly
high occurrence of pausing or rewinding may indicate that
students having difficulty in understanding the material.
The authors encoded high pausing or rewinding activities
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Fig. 10. Selected examples of visual techniques for Industry 4.0. (1) Xu et al. [130] extend a Marey’s graph to visualize product moving traces in
a production line. (2) In LiveGantt [50], the big picture of the current schedule is visualized in a Gantt chart. (3) Wu et al. [123] employ a stacked
timeline to reveal how the real equipment conditions deviate from ”normal” conditions in a period of time. The long-term trends of equipment
conditions are visualized as a radial visualization to provide users with an overview of equipment conditions during a certain past time period.

with peaks, and provide statistics such as peak duration,
and user distribution with superposed glyphs. Moreover,
spatiotemporal information the correlations of the peaks
are visualized with two additional visualizations (Fig. 9(3)).
CCVis [35] explores the patterns of students’ clicking behav-
ior and identifies course resources that were clicked most
and least. It visualizes the critical sequences that lead to
different transition probabilities in a node-link diagram with
a Sankey-based visualization showing the click patterns.

5.2.3 Computer systems

Computer systems are monitored by regularly sampling
profile data that record the timestamped conditions (e.g.,
CPU load, memory usage) of specific devices over time
as event sequences. Monitoring and analyzing the profile
data is an efficient approach to observe the running sta-
tus of a large number of devices. For instance, a cloud
computing system is normally comprised of thousands of
parallel computing and storage devices. Tracing every de-
vice is untenable due to scale. By analyzing the profile
data, the devices that are over- or under-allocated, ineffi-
cient operations, and nodes that are misbehaving or failing
could be detected from all the devices. However, the profile
data collected from computing systems are large-scale and
multidimensional. In order to effectively observe the data,
various techniques have been introduced to overcome this
challenge. Muelder et al. [74] proposed a visual technique to
portray the behavior of cloud computer systems over time.
The authors adopted a stacked graph timeline to summarize
the aggregate behavior of cloud computing systems. For
detailed inspection, the behavioral lines of each compute
node are plotted in a table of line charts. In this view,
analysts can efficiently explore the trends and anomalies

within a system. Xie et al. [126] leveraged one-class support
vector machines to detect anomalous executions in high
performance computing clusters. Detected anomalies are
visualized in a multi-level visualization system for deeper
analysis. Specifically, all of the anomalous compute trees are
identified in a scatter plot. Analysts can select the anomalies
of interest to inspect their structural patterns in a node-link
diagram and their invoked functions in a stacked timeline.
[129] provides interactive visualization capabilities that en-
able analysts to inspect profile data and identify anomalous
performances in cloud computing systems. This system
combines multiple visualization modes, such as glyph de-
sign and stacked line charts, to monitor the performance of
cloud computing systems from different aspects (Fig. 9(2)).

5.3 Industry 4.0
Industry 4.0 or The Fourth Industrial Revolution is the
ongoing process of using modern smart technology in in-
dustrial practices to achieve the automation of traditional
manufacturing. The temporal status of smart equipment
over time can be recorded as an event sequence, where
each event represents a status (e.g., an equipment condi-
tion or a processing event). The increasing availability of
such event sequence data permits manufacturing experts to
better understand the line’s performance and explore ideas
for improvement. For instance, experts could identify the
recurring error patterns from collected data to indicate some
systematic production issues. However, the data collected
from smart factories are multivariate and high-dimensional,
it is often unclear, which subsets of the data should be
focused on to detect anomalies and improve the factory’s
productivity. To address these challenges, a variety of visual
techniques have been introduced to help users exploring
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anomalous events [8], [43], [123], [130], [141] and optimiz-
ing manufacturing plans [50], [105].

In smart factories, an anomalous event (e.g., equipment
failure, outlier process) could result in a serious incident
or great financial loss. Traditional anomaly detection de-
pends on manually checking every equipment, which is
too expensive and inefficient. In contrast, the collected
manufacturing data provides a more reliable resource for
factory managers to analyze anomalies. For instance, Herr
et al. [43] analyze event reports of a production line and
detected systematic issues in manufacturing processes. Re-
ported events are shown as a time series plot that can
help understand the error distribution and recurring error
patterns. Xu et al. [130] extended Marey’s graph to visualize
product moving traces in a production line (Fig. 10(1)). The
visualization of individual products and their processing
times improves user understanding of a line’s performance,
and also helps in better understanding anomalies, the causes
and the effects in a production line. The visual technique
proposed by Wu et al. [123] provides an interactive interface
to monitor the status of equipment in smart factories. The
authors estimated normal conditions of equipment based
on a training set, and then employed a stacked timeline to
reveal how the real equipment data deviate from estimated
normal conditions over a short period of time (Fig. 10(3)).
Moreover, in order to visually summarize the long-term
trends of equipment conditions, the authors adopted a
radial visualization to provide an overview of equipment
conditions during a certain past time period.

Analyzing manufacturing data can help managers and
factory planners optimize manufacturing schedules. More
specifically, in a production line, each machine is responsible
only for a specific part of the production process. When the
cooperation of machines is not well designed, the produc-
tion line’s overall efficiency will be negatively affected. The
event sequence data of production lines record the past and
current tasks of machines. By analyzing these data, factory
planners can explore and reschedule inefficient plans, such
as a manufacturing plan with significant equipment conflict.
LiveGantt [50] is an interactive schedule visualization tool
that helps managers explore highly concurrent manufactur-
ing schedules from various perspectives. In this technique,
the big picture of the current schedule is visualized in a
Gantt chart (Fig. 10(2)). Users are allowed to interactively ex-
plore the inefficiencies and reschedule manufacturing plans
accordingly. PlanningVis [105] is a multi-level visualization
system to support interactive exploration and comparison of
production plans. This technique juxtaposes heat maps, line
charts, and bar charts to visualize the differences between
two plans, and thus, optimizing production plans.

6 CHALLENGES AND OPPORTUNITIES
In previous sections, we summarized event sequence visu-
alizations according to our proposed design space, extracted
five analytical tasks common in visual analysis techniques
for event sequences, and categorized the visual analysis
techniques into three typical applications. Through this pro-
cess, we combined the existing works [89], [101], [124], [140]
and found the following remaining challenges in existing
research and promising future research directions that are
discussed in this section.

Data quality: The performance of data analysis tech-
niques largely depends on the quality of data [52]. On
top of this, the complexity of event sequence data adds

difficulty to data recording and leads to more problems
for data quality. Typical data quality issues include data
incompleteness (e.g., missing events or timestamps), data
errors (e.g., errors or inconsistency in event naming), and
duplication of data records, each of which can mislead
statistical analysis results. The issue of data quality implies
a need for additional effort to improve data processing to
prevent misleading results gathered from the source data.

Uncertainty: Uncertainty is introduced when analyzing
event sequence data with quality issues or during user-
specified data adjustments such as data transformation and
wrangling. This uncertainty can inhibit analysts from mak-
ing optimal decisions if information about uncertainty is not
properly communicated in the visual analytics process [94].
Although some previous studies [21], [37] have incorpo-
rated uncertainty information in visual analytics of event
sequence data, they focused on only one type of uncertainty
information – the probabilistic uncertainty under an event
prediction scenario. Therefore, more research is required to
study the best ways of incorporating and visualizing other
types of uncertainty information, such as bounded uncer-
tainty, during the process of event sequence data analysis.

Scalability: Scalability is a well-recognized challenge
in visual analytics [19], [53]. This problem becomes more
significant in visual analytics of event sequence data due
to the large scale (i.e., a large number of sequences) and
high dimensionality (i.e., a vast number of event types) of
most real-world event sequences datasets [32]. Du et al. [25]
surveyed 15 strategies for sharpening analytic focus that an-
alysts can use to reduce the data volume and pattern variety
in event sequences. Some previous research touches upon
this problem mainly through sequence aggregation [120]
and event filtering [32], [34] to enhance the visual scalability
on the sequence level and event level respectively. However,
these summarization techniques hinder the inspection of
detailed individual sequences and events, and the problem
of how to scale across both sequence summarizations and
low-level details still remains. Therefore, there is a demand
for a scalable visual analytics pipeline that follows the
Visual Information-Seeking Mantra by Shneiderman [100]:
“overview first, zoom and filter, then details-on-demand”
to allow users to flexibly switch between visual summaries
and sequence details.

Heterogeneity: Event sequence data can contain a vari-
ety of heterogeneous temporal events. For example, medical
health records usually include multiple event types such as
diagnostic events, lab test results, vital signs, drug adminis-
trations, etc. Social media data includes multimedia content,
such as text, image, and video. Events of each event type
are observed or recorded with different sampling rates and
show different event patterns, which leads to great difficulty
for aggregating and organizing data from multiple sources.
Most existing techniques choose to assemble all types of
events to form a unified process for modeling and display.
However, this may hinder the discovery of relationships
between event types and distinctive patterns from disparate
event types, which is crucial for investigative tasks and
sense-making processes [117]. To solve this issue, a visual
analytics framework needs to be developed, enabling both
the integrated analysis of multiple event processes and the
investigation of patterns for individual processes.

Multivariate event sequence visualization: Existing vi-
sual analytics techniques for event sequences generally char-
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acterize events based on their types and timestamps only.
Besides these two common event attributes, however, events
in a sequence can also be associated with multivariate data.
For instance, lab test events in medical data are associated
with specific test values, and financial transaction records
also contain information about bank accounts and the mon-
etary amount of a transaction. It still remains challenging
to visualize multivariate event sequences due to the large
number of event attributes a single event may include,
coupled with the additional heterogeneity introduced by
different data formats of the variables linked to events.
Cappers and Wijk [7] provide a starting point of this issue by
displaying the distributions of attributes for each individual
event using lists of bar charts. However, this method can
be limited for the discovery of the association between at-
tributes of the same event or between multiple event types.
This implies a need for a new visualization design that is
able to represent categorical event types and multivariate
attributes at the same time.

Interpretability: The chosen analysis model is a criti-
cal component in the pipeline of visual analytics [53]. In
the pursuit of better analytical performance, recently de-
veloped visual analytics tools tend to leverage advanced
machine learning or deep learning models with consider-
ably high complexity. These, however, introduce issues of
interpretability of the analysis results and a lack of control
over the analytical process, both of which are essential
for high-impact analytical tasks such as precision medicine
and financial investments [17]. To address such problems,
there has been an increased research investment towards
explainable artificial intelligence [71], [104], with the goal of
uncovering the inner workings of complex models. Even so,
the mechanisms underlying these models can be difficult
for non-expert users to understand. Thus, there is a high
demand for visual analytics techniques that can organize,
transform, and communicate model-level interpretations
into comprehensible and actionable guidance. Some recent
advancements [16], [38], [48] tackle this issue with a focus on
a particular analytical tasks and analysis models, yet more
generalizable techniques must be explored and developed.

Causality Analysis: From our review of event sequence
analysis techniques, we noticed that causality analysis for
event sequence data has gained increased attention in the
data mining community over the past years. Many causal-
ity analysis techniques have been proposed [128], [134] to
uncover the cause-and-effect relationship between events.
However, very few visual analytics techniques have been
developed for the causality analysis of event sequences.
Despite that some existing visual analytics methods are
developed for analyzing multivariate data [113], [114], the
temporal nature and high dimensionality of event sequence
data can lead to additional challenges, which are worth
addressing in future research.

Deep Learning & Machine Learning: The capability of
visual analytics techniques is largely determined by ana-
lytics techniques. As the complexity of data is exponen-
tially increased, it is a challenging task for visual analyt-
ics techniques to process the data efficiently. To overcome
this challenge, deep learning techniques, such as Recurrent
Neural Networks, Variational AutoEncoders, Transformer,
BERT are employed in advanced visual analysis techniques.
For instance, CarePre [48] employs Recurrent Neural Net-
works to predict future activities based on historical event
sequences. Eventthread3 [38] leverages variational autoen-

coders to estimate underlying normal progressions for each
given sequence represented as occurrence probabilities of
events along with the sequence progression. In the future
study, driven by more powerful deep learning and machine
learning techniques, visual analytics techniques could pro-
cess more complicated data and analytics tasks.

7 CONCLUSION

This paper presents a survey of visual analytics approaches
for event sequence data. The survey proposed a taxonomy
that includes a fine categorization (design spaces) and two
coarse categorizations (analysis tasks and applications) for
characterizing the state-of-the-art techniques. In particular,
the techniques are partitioned by five analytical tasks and
five applications, and featured by their corresponding de-
sign elements in the design space. Finally, the paper dis-
cusses the remaining challenges, and points out promising
future research directions. With this survey, we connect
prior studies in this topic by fitting them together into our
taxonomy. We hope our work could provide practitioners
with an overview of the alternatives approaches, and help
them find the most appropriate design components in de-
veloping an effective visual analytics solution that addresses
their analytical tasks at hand.

ACKNOWLEDGMENTS
Nan Cao is the corresponding author. This work was sup-
ported in part by NSFC 62061136003. We would like to
thank our reviewers, Prof. Catherine Plaisant, Prof. Ben
Shneiderman, Prof. Daniel Weiskopf, and many other read-
ers for their valuable feedback and suggestions.

REFERENCES

[1] D. Bhattacharjya, K. Shanmugam, T. Gao, N. Mattei, K. R.
Varshney, and D. Subramanian. Event-driven continuous time
bayesian networks. In AAAI, pp. 3259–3266, 2020.

[2] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Time-
lines revisited: A design space and considerations for expressive
storytelling. IEEE TVCG, 23(9):2151–2164, 2016.

[3] N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual
analysis of multidimensional clusters. IEEE TVCG, 17(12):2581–
2590, 2011.

[4] N. Cao, Y.-R. Lin, F. Du, and D. Wang. Episogram: Visual
summarization of egocentric social interactions. IEEE CG&A,
36(5):72–81, 2015.

[5] N. Cao, Y.-R. Lin, X. Sun, D. Lazer, S. Liu, and H. Qu. Whisper:
Tracing the spatiotemporal process of information diffusion in
real time. IEEE TVCG, 18(12):2649–2658, 2012.

[6] N. Cao, C. Shi, S. Lin, J. Lu, Y.-R. Lin, and C.-Y. Lin. Targetvue:
Visual analysis of anomalous user behaviors in online communi-
cation systems. IEEE TVCG, 22(1):280–289, 2015.

[7] B. C. Cappers and J. J. van Wijk. Exploring multivariate event
sequences using rules, aggregations, and selections. IEEE TVCG,
24(1):532–541, 2017.

[8] D. Chankhihort, B.-M. Lim, G.-J. Lee, S. Choi, S.-O. Kwon, S.-H.
Lee, J.-T. Kang, A. Nasridinov, and K.-H. Yoo. A visualization
scheme with a calendar heat map for abnormal pattern analysis
in the manufacturing process. Journal of Contents, 13(2):21–28,
2017.

[9] M. Chen, A. Trefethen, R. Banares-Alcantara, M. Jirotka, B. Co-
ecke, T. Ertl, and A. Schmidt. From data analysis and visualiza-
tion to causality discovery. Computer, (10):84–87, 2011.

[10] Q. Chen, Y. Chen, D. Liu, C. Shi, Y. Wu, and H. Qu. Peakvizor:
Visual analytics of peaks in video clickstreams from massive open
online courses. IEEE TVCG, 22(10):2315–2330, 2015.

[11] Q. Chen, X. Yue, X. Plantaz, Y. Chen, C. Shi, T.-C. Pong, and
H. Qu. Viseq: Visual analytics of learning sequence in massive
open online courses. IEEE TVCG, 26(3):1622–1636, 2020. doi: 10.
1109/TVCG.2018.2872961

[12] S. Chen, S. Chen, Z. Wang, J. Liang, Y. Wu, and X. Yuan. D-
map+ interactive visual analysis and exploration of ego-centric
and event-centric information diffusion patterns in social media.
ACM TIST, 10(1):1–26, 2018.



18

[13] S. Chen, S. Li, S. Chen, and X. Yuan. R-map: A map metaphor for
visualizing information reposting process in social media. IEEE
TVCG, 26(1):1204–1214, 2019.

[14] Y. Chen, A. Puri, L. Yuan, and H. Qu. Stagemap: Extracting and
summarizing progression stages in event sequences. In IEEE Big
Data, pp. 975–981, 2018.

[15] Y. Chen, P. Xu, and L. Ren. Sequence synopsis: Optimize visual
summary of temporal event data. IEEE TVCG, 24(1):45–55, 2017.

[16] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stew-
art. Retain: An interpretable predictive model for healthcare
using reverse time attention mechanism. In NeurIPS, pp. 3504–
3512, 2016.

[17] J. Choo and S. Liu. Visual analytics for explainable deep learning.
IEEE CG&A, 38(4):84–92, 2018.

[18] A. Choudhry, M. Sharma, P. Chundury, T. Kapler, D. W. Gray,
N. Ramakrishnan, and N. Elmqvist. Once upon a time in
visualization: Understanding the use of textual narratives for
causality. IEEE TVCG, 2020.

[19] K. A. Cook and J. J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report,
Pacific Northwest National Lab, 2005.

[20] T. N. Dang, P. Murray, J. Aurisano, and A. G. Forbes. Reaction-
flow: an interactive visualization tool for causality analysis in
biological pathways. In BMC proceedings, vol. 9, p. S6. BioMed
Central, 2015.

[21] F. Du, S. Guo, S. Malik, E. Koh, S. Kim, and Z. Liu. Interactive
event sequence prediction for marketing analysts. In ACM CHI,
pp. 1–8, 2020.

[22] F. Du, C. Plaisant, N. Spring, and B. Shneiderman. Eventaction:
Visual analytics for temporal event sequence recommendation.
In IEEE VAST, pp. 61–70, 2016.

[23] F. Du, C. Plaisant, N. Spring, and B. Shneiderman. Finding
similar people to guide life choices: Challenge, design, and
evaluation. In ACM CHI, pp. 5498–5544, 2017.

[24] F. Du, C. Plaisant, N. Spring, and B. Shneiderman. Visual
interfaces for recommendation systems: Finding similar and dis-
similar peers. ACM TIST, 10(1):1–23, 2018.

[25] F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer. Coping
with volume and variety in temporal event sequences: Strategies
for sharpening analytic focus. IEEE TVCG, 23(6):1636–1649, 2016.

[26] N. Elmqvist and P. Tsigas. Growing squares: Animated visualiza-
tion of causal relations. In ACM Symp. on Software Visualization,
pp. 17–ff, 2003.

[27] N. Elmqvist and P. Tsigas. Animated visualization of causal
relations through growing 2d geometry. Information Visualization,
3(3):154–172, 2004.

[28] J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A
visual interface for multivariate temporal data: Finding patterns
of events across multiple histories. In IEEE VAST, pp. 167–174,
2006.

[29] X. Fan, Y. Peng, Y. Zhao, Y. Li, D. Meng, Z. Zhong, F. Zhou, and
M. Lu. A personal visual analytics on smartphone usage data.
JVLC, 41:111–120, 2017.

[30] F. Fischer, J. Fuchs, P.-A. Vervier, F. Mansmann, and O. Thonnard.
Vistracer: A visual analytics tool to investigate routing anomalies
in traceroutes. In VizSec, pp. 80–87, 2012.

[31] L. Franklin, C. Plaisant, K. Minhazur Rahman, and B. Shneider-
man. Treatmentexplorer: An interactive decision aid for medical
risk communication and treatment exploration. Interacting with
Computers, 28(3):238–252, 2016.

[32] D. Gotz and H. Stavropoulos. Decisionflow: Visual analytics for
high-dimensional temporal event sequence data. IEEE TVCG,
20(12):1783–1792, 2014.

[33] D. Gotz, S. Sun, and N. Cao. Adaptive contextualization:
Combating bias during high-dimensional visualization and data
selection. In ACM IUI, pp. 85–95, 2016.

[34] D. Gotz, J. Zhang, W. Wang, and J. Shrestha. Visual analysis of
high-dimensional event sequence data via dynamic hierarchical
aggregation. IEEE TVCG, 26(1), 2020.

[35] M. C. Goulden, E. Gronda, Y. Yang, Z. Zhang, J. Tao, C. Wang,
X. Duan, G. A. Ambrose, K. Abbott, and P. Miller. Ccvis:
Visual analytics of student online learning behaviors using course
clickstream data. Electronic Imaging, 2019(1):681–1, 2019.

[36] R. Guo, T. Fujiwara, Y. Li, K. M. Lima, S. Sen, N. K. Tran, and K.-L.
Ma. Comparative visual analytics for assessing medical records
with sequence embedding. Visual Informatics, 2020.

[37] S. Guo, F. Du, S. Malik, E. Koh, S. Kim, Z. Liu, D. Kim, H. Zha,
and N. Cao. Visualizing uncertainty and alternatives in event
sequence predictions. In ACM CHI, pp. 1–12, 2019.

[38] S. Guo, Z. Jin, Q. Chen, D. Gotz, H. Zha, and N. Cao. Visual
anomaly detection in event sequence data. In IEEE Big Data, pp.
1125–1130, 2019.

[39] S. Guo, Z. Jin, D. Gotz, F. Du, H. Zha, and N. Cao. Visual
progression analysis of event sequence data. IEEE TVCG, pp.
1–1, 2018.

[40] S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao. Eventthread:
Visual summarization and stage analysis of event sequence data.
IEEE TVCG, 24(1):56–65, 2017.

[41] Y. Han, A. Rozga, N. Dimitrova, G. D. Abowd, and J. Stasko.
Visual analysis of proximal temporal relationships of social and
communicative behaviors. In Computer Graphics Forum, vol. 34,
pp. 51–60. Wiley Online Library, 2015.

[42] H. He, B. Dong, Q. Zheng, and G. Li. Vuc: Visualizing daily video
utilization to promote student engagement in online distance
education. In CompEd, pp. 99–105, 2019.

[43] D. Herr, F. Beck, and T. Ertl. Visual analytics for decomposing
temporal event series of production lines. In IEEE iV, pp. 251–
259, 2018.

[44] M. A. Hibbs, N. C. Dirksen, K. Li, and O. G. Troyanskaya. Visu-
alization methods for statistical analysis of microarray clusters.
BMC Bioinformatics, 6(1):115, 2005.

[45] O. Huisman and P. Forer. The complexities of everyday life: bal-
ancing practical and realistic approaches to modeling probable
presence in space-time. In SIRC, pp. 155–167, 2005.

[46] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction
to statistical learning, vol. 112. Springer, 2013.

[47] W. Jentner and D. A. Keim. Visualization and visual analytic
techniques for patterns. In High-Utility Pattern Mining, pp. 303–
337. Springer, 2019.

[48] Z. Jin, S. Cui, S. Guo, D. Gotz, J. Sun, and N. Cao. Carepre: An
intelligent clinical decision assistance system. ACM HEALTH,
1(1):1–20, 2020.

[49] Z. Jin, S. Guo, N. Chen, D. Weiskopf, D. Gotz, and N. Cao.
Visual causality analysis of event sequence data. IEEE TVCG,
27(2):1343–1352, 2021. doi: 10.1109/TVCG.2020.3030465

[50] J. Jo, J. Huh, J. Park, B. Kim, and J. Seo. Livegantt: Interac-
tively visualizing a large manufacturing schedule. IEEE TVCG,
20(12):2329–2338, 2014.

[51] N. R. Kadaba, P. P. Irani, and J. Leboe. Visualizing causal
semantics using animations. IEEE TVCG, 13(6):1254–1261, 2007.

[52] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H.
Riche, C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research
directions in data wrangling: Visualizations and transformations
for usable and credible data. Information Visualization, 10(4):271–
288, 2011.

[53] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer,
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