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Abstract—Data with multiple probabilistic labels are common in many situations. For example, a movie may be associated with

multiple genres with different levels of confidence. Despite their ubiquity, the problem of visualizing probabilistic labels has not been

adequately addressed. Existing approaches often either discard the probabilistic information, or map the data to a low-dimensional

subspace where their associations with original labels are obscured. In this paper, we propose a novel visual technique, UnTangle

Map, for visualizing probabilistic multi-labels. In our proposed visualization, data items are placed inside a web of connected triangles,

with labels assigned to the triangle vertices such that nearby labels are more relevant to each other. The positions of the data items are

determined based on the probabilistic associations between items and labels. UnTangle Map provides both (a) an automatic label

placement algorithm, and (b) adaptive interactions that allow users to control the label positioning for different information needs. Our

work makes a unique contribution by providing an effective way to investigate the relationship between data items and their

probabilistic labels, as well as the relationships among labels. Our user study suggests that the visualization effectively helps users

discover emergent patterns and compare the nuances of probabilistic information in the data labels.

Index Terms—Visualization, multidimensional visualization, probability vector

Ç

1 INTRODUCTION

PROBABILISTIC multi-label data is a common type of out-
put from many different types of analysis models in the

fields of data mining and machine learning. Such data con-
sists of a set of data items, each described by a probability
vector1 that indicate the likelihood that the item has been
categorized by various data labels. For instance, in statistical
classification2 or fuzzy clustering [1], an algorithm is used to
label (with a category or cluster) a new data item. The algo-
rithms are typically based on a training dataset containing
items whose labels are known, or on a distance measure
capturing the similarity between the input data items.
Because such methods produce labels that are not mutually
exclusive, the analysis result for each item is typically repre-
sented as an n-dimensional probability vector where n is
the number of possible labels. The ith entry in the probabil-
ity vector indicates the likelihood of the new data item
belonging to the ith category or cluster.

This form of probabilistic multi-label analysis has been
used across a wide spectrum of applications. For example,
in movie classification tasks, an individual movie might be

labeled as both an “action” movie and a “comedy”, each
with different levels of confidence. In a market segmentation
analysis, an individual customer may be probabilistically
assigned to multiple segments. In biochemistry, a protein
sequence can be assigned to multiple structural categories.
In document retrieval, a document may be relevant to multi-
ple topics in varying degrees. In our own everyday life, we
often associate with individual people, simultaneously, in
multiple communities. For example, the same person can at
once be a co-worker and a friend, or a business contact and
an extended family member [2]. In all of these cases, the data
items (e.g., movies, customers, etc.) may be associated with
multiple labels (e.g., movie genres, customer segments, etc.)
according to a set of probabilistic values that represent
uncertainty levels for corresponding labels.

As these examples show, probabilistic multi-label data
is common and widely available in many application
domains. Yet despite this ubiquity, few visualization techni-
ques have been designed specifically for such data. Existing
work in this area generally follows one of two basic para-
digms: (a) visualizing data through a set of independent
coordinates, or (b) mapping data to a dimension-reduced
plane for visualization. Scatterplot matrices (SPM) [3] and
parallel coordinates [4] are commonly used representatives
for the first approach. Techniques that follow the second
approach, in which high dimensional data is projected to a
low dimensional (2-3D) subspace for graphical presentation
include multidimensional scaling (MDS) [5] and RadVis [6].

We argue that adopting either of these paradigms for
probabilistic multi-label data introduces significant draw-
backs. While the first approach of using a set of independent
coordinates is useful for discovering correlations between
labels, it is typically much more challenging to identify
higher level trends or summaries among labels (e.g., which
labels are the most dominant or isolated). Meanwhile, the

1. http://en.wikipedia.org/wiki/Probability_vector
2. http://en.wikipedia.org/wiki/Statistical_classification
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second approach of using dimension-reduction may help
convey proximity between items and labels (if the labels are
also mapped onto the same plane), but relationships
between items and labels are ambiguous due to loss of
information that occurs as part of the reduction process.

In this paper, we introduce UnTangle Map, an extension
of our previous work on this topic [7]. We describe an
improved method for visualizing probabilistic multi-label
data (see Fig. 1), which is more scalable, flexible, and intelli-
gent. Following the previous design, we create a triangle
mesh in which each triangle serves as a set of axes for a ter-
nary plot.3 Labels are placed on the triangle vertices and
data items are placed inside each of the triangles. The data
items are positioned according to the items’ probabilistic
associations with the triangle’s three vertex labels. This
design conveys a set of normalized distributions computed
for each of the ternary plots, and at the same time allows for
the discovery of higher-level patterns through the connec-
tions between neighboring ternary plots. Extending our

earlier version [7], this article include three specific novel
aspects: (1) the introduction of a more precise and controlla-
ble layout technique for placing label vertices based on dif-
ferent layout objectives (e.g., to better emphasize correlation
or clustering structure); (2) an aggregation-based rendering
technique to improve scalability to large numbers of data
items; and (3) a more comprehensive evaluation that
includes additional case studies on real-world datasets
which further demonstrate the design’s features, and new
discussion dedicated to comparing different layout criteria
and their corresponding results.

The key contributions of this paper include:
Visualization design. We identify the main challenges in

visualizing data with probabilistic multi-labels and describe
the visual design of UnTangle Map, which addresses those
challenges. In particular, our novel design leverages the
ideas of independent coordinates and subspace creation in
order to support several visual query tasks in a probabilistic
multi-label dataset where the labels are not mutually exclu-
sive. Our expanded design includes changes to support
more scalable visualization of large datasets.

Label arrangement methods. We describe a novel, auto-
mated, optimization-based layout algorithm for label
arrangement. It adopts a data-driven approach to both
assign labels to vertices, and to position the vertices across a
two-dimensional trianglular mesh of slots so as to optimize
specific layout quality measures. We present the layout
measures, describe the overall algorithm, and demonstrate
that our approach produces high quality layouts when
applied to real-world datasets.

User evaluation. In addition to quantitative evaluation
measures, we demonstrate the value of our approach to
users by presenting the results from a formal user study.
The study results highlight the ability of UnTangle Map to
support a variety of visual analysis tasks. Moreover, our
evaluation results are compared to two baseline visualiza-
tion techniques to demonstrate the benefits that our
approach provides. The remainder of this paper is orga-
nized as follows. We first discuss the problem scope in
Section 2, followed by the literature review in Section 3. We
present our design and rationale in Section 4, and the label
placement algorithm in Section 5. We present the evaluation
in Section 6 that includes results from quantitative experi-
ments (Sections 6.1 and 6.2), case studies (Section 6.3) and a
user study (Section 6.4). Finally, Section 7 concludes the
paper and discusses possible future directions.

2 PROBLEM SCOPE

Before drilling into technical details, in this section, we dis-
cuss our problem scope by formulating the problem, identi-
fying the challenges, and clarifying the research goals.

Problem formulation.Here we describe the specific proper-
ties of probabilistic multi-label data and the key visual
query tasks on such data.

We present below the visualization problem dealing with
probabilistic multi-labels. Let ðxiÞi¼1...n 2 X be the n data
items in data set X. Let ðlkÞk¼1...m 2 L be the m different
labels in label set L. Each of the items is associated multiple
labels with different level of uncertainties, which can be rep-
resented by a probabilistic vector ~pi ¼ hpi1; pi2; . . . ; pimi with

Fig. 1. Visualizing data with multiple probabilistic labels via UnTangle
Map. The data shown here is from DBLP and consists of authors and
conferences in computer science. We consider conferences as labels
because authors are likely to publish in multiple conferences with differ-
ent probabilities. In the visualization, probabilistic labels (conferences)
are placed at triangle vertices and data items (authors) are scattered as
points inside the triangles according to their probabilistic associations
with the corresponding labels. The positioning of the conference labels
are automatically determined based on the intrinsic correlation structure
in the data. Interesting patterns revealed by UnTangle Map in this case
include: the clusters (labeled by numbers) of different research commu-
nities dealing with various directions, and the clear separation between
the traditional computer science at the right bottom and the modern
information science at the top left.

3. http://en.wikipedia.org/wiki/Ternary_plot
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real value pik 2 ½0; 1� for i ¼ 1 . . .n, k ¼ 1 . . .m. The probabi-
listic value pik usually represents the posterior probability
of data item xi for the label k.

Challenges. There are several key challenges for
visualizing the aforementioned data:

� Scalability. The number of labels in the data may be
large—datasets with dozens or hundreds of labels
are typical (e.g., the genre labels in a movie dataset,
or the topic labels in a document corpus). Existing
methods for multivariate visualization, including
scatterplot matrices and parallel coordinates,
typically suffer from scalability issues.

� Subspace ambiguity. Multidimensional scaling and
other projection-based techniques map data items to
a low-dimensional subspace, which can distort
the original relationships between data items and
labels. The process results in information loss and
introduces ambiguity.

� Visual summary of probabilistic distributions. Most
existing tools lack the capacity to summarize the dis-
tribution of labels, e.g., to inform which labels are
more or less populated among the data items.

Goals. We identify visual query tasks as our design goals
in the context of the aforementioned problems and chal-
lenges. Generally, our work has been motivated by the
necessity of supporting visual inquiry on the data with
probabilistic multi-labels:

� Q1. Item-label relationship. How do data items associ-
ate with many different labels? How much, in a
probabilistic sense, is an item associated with a spe-
cific label compared with other labels?

� Q2. Label summary. Which labels are most (or least)
populated among the data items?

� Q3. Two-way label interaction.How are common items
shared between two labels? Which labels share items
most intensely?

� Q4. Three-way label interaction. For data items strongly
associated with two labels, are there additional label
(s) that are also strongly associated?

� Q5. Multi-way label interaction. For a set of labels,
which is the most dominant (having the strongest
association with the data items) and which is the
most isolated (having the weakest association with
the data items)?

Proper support for these tasks requires overcoming the
above-mentioned challenges. For example, a solution to Q1
needs to address both the scalability and subspace ambigu-
ity issues, while a solution to Q2 corresponds to the visual
summary challenge. Furthermore, Q3-Q5 relate to the chal-
lenge of visualizing the interactions among labels. In partic-
ular, Q3 relates to interactions between pairs of labels (two-
way), Q4 relates to ternary interaction (three-way), and Q5
relates to interactions among many labels (multi-way). Our
goal is to provide a visual technique that can support all of
these visual query tasks.

3 RELATED WORK

In prior work, probabilistic multi-label data have most
commonly been visualized using either multidimensional

or graph-based techniques. In particular, versions of these
visualization methods have been applied to data produced
by fuzzy clustering, topic modeling, and classification. In
this section, we provide a brief review of related work in
these areas. We then identify a set of challenges to be
addressed in our visualization design.

3.1 Visualizing Labels as Multidimensional Data

One approach to visualizing probabilistic multi-label data is
to use methods designed for multidimensional or multivari-
ate data (mdmv) [8]. In this approach, each label in the
data corresponds to a dimension, and data items are associ-
ated with each of these dimensions of labels through a proba-
bilistic value. In this sense, label data can be viewed as
multiple dimensions of numeric variables. It can therefore be
visualized with multidimensional methods. Existing techni-
ques generally fall into two visual paradigms: (a) independent
coordinates or (b) a dimension-reduced plane.

Representative techniques in the independent coordi-
nates category include scatterplot matrices [3] and parallel
coordinates [4]. Scatterplot matrices [3] represent data items
in all pairwise permutations of dimensions such that the
relationships between any two specific dimensions can be
discovered and compared. However, since the number of
matrices grows quadratically with number of dimensions
(labels), this visualization does not scale well as the number
of labels grows. Although interaction techniques such as
Rolling the Dice [9] may be used to help users explore the
data, discovering relationships among many labels remains
challenging. Like scatterplot matrices, parallel coordi-
nates [4] and many of its variants (e.g., [10], [11]) are only
effective when the number of dimensions is small [12].
Moreover, clutter reduction is needed for data with many
dimensions [13]. Besides scalability, a major issue with such
independent coordinate representations is that they do
not facilitate higher-level visual comparison among labels,
such as identifying the most dominant or isolated labels
according to the distribution of data items.

Given the challenges of scale, the second paradigm uses
dimension reduction to map data into a lower-dimensional
space for visualization. Multidimensional scaling [5] is one
of the most popular techniques in this category. MDS seeks
to preserve high dimensional distances in a low (2D or 3D)
dimensional space. Principal Component Analysis [14] and
various linear transformation methods [15] project data by
maximizing the variance of data items based on different
constraints. Self-Organizing Maps [16] use a 2D lattice to
portray the distribution of data element in the high dimen-
sional space via a learning process. A modified Sammon
Mapping [17] preserves the distance between data elements
and cluster center in a low dimensional space. RadVis [6]
projects the multidimensional data into barycentric coordi-
nates [18] based on a force-directed layout model [19].
t-SNE [20] creates a single map that reveals structure at
many different scales. Compared to the independent coordi-
nate representations, these methods are more scalable for
high dimensional data. However, when projecting data
items and labels to a lower dimensional space, proximity
among items and labels are distorted and information is
lost. This means that the visualized information may no lon-
ger be accurate and can become ambiguous.
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3.2 Visualizing Labels as Graphs

The relational patterns inside probabilistic multi-label data
can also be illustrated with graph-based visualizations [21],
especially by using node-link diagrams [22] based on dis-
tance-embedding layout algorithms (e.g., force-directed lay-
out) [23]. In this case, nodes in the graph represent labels or
data items, while edges and their weights represent the rela-
tionships between data items (e.g, item similarity), between
labels (e.g., dimension correlation), or between labels and
items (e.g., the probabilities of the items being categorized
by the labels). In the visualization, the distances between
pairs of nodes are in reverse proportion to the strength of
the corresponding relationships (i.e., two closely positioned
nodes indicate a strong relationship between them). This
design usually has significant readability issues when the
graph is dense [22]. This is a critical limitation for probabili-
tistic multi-label data, where a complete graph is required
to capture the relationships between all pairs of data items
and labels. Although visual clutter can be reduced by hiding
or filtering the edges, the visual ambiguity that is intro-
duced makes data interpretation difficult.

3.3 Visualization of Statistical Analysis Results

The statistical results produced by classification, fuzzy clus-
tering [1], and topic modeling [24] can considered forms of
probabilistic multi-label data. Visualizations designed of
these results are therefore closely related to our work.

Fuzzy clustering. Fuzzy clustering methods assign data
items to one or more clusters with a degree of uncertainty
(hence the term “fuzzy”). Rousseeuw proposed Silhou-
ettes [25], a method that attempts to interpret fuzzy clusters
in a one-dimensional diagram. Each data element is repre-
sented as a small dot and packed inside its most likely clus-
ter. Wiswedel et al. [26] extend this design with interactive
functions that allow users to select and discard the elements
in each cluster to fine-tune the clustering results. Techni-
ques were also proposed for representing overlapping clus-
ters as lines or bubbles [27], [28], [29], [30]. However, they
all more or less suffer from line crossings or set overlaps
when data are dense. Recently, Cao et al. [31] and Streit
et al. [32] introduced techniques for visualizing fuzzy clus-
ters by grouping data items based on similarity of their
probability vectors. These designs represent fuzzy clusters
via clear cuts which could be misleading.

There has also been work that represents fuzzy clusters
in a projection space, where contour or lines are used to
depict soft cluster boundaries [17], [33], [34]. Simonetto
et al. [35] and others [36], [37] developed methods to gener-
ate Euler-like diagrams for visualizing overlapping clusters.
ContexTour [34] uses a contour map to represent the den-
sity distribution of data items, showing a smooth and fuzzy
margin between two adjacent clusters. These designs use
projection for dimension reduction, a method with limita-
tions that have already been discussed.

Topic models. A branch of work closely related to fuzzy
clustering is topic modeling applied to text data [38], [39].
Using techniques such as Latent Dirichlet Allocation [38],
text documents can be automatically associated with one or
more topics for search or organizational purposes. Recent
advances in topic visualization have focused either on topic

transition [40], or on viewing topics across different infor-
mation facets [41], [42]. For most of these techniques, the
probabilistic topic assignment is first converted into a hard
assignment for simplicity, and hence they are not suitable
for visualizing probabilistic multi-label data.

In text visualization, it is common to treat documents as
high dimensional data based on the bag-of-words vector
space representation. Dimension reduction techniques can
be used to visualize keywords or documents on a 2D plane,
with related items reflected through the spatial clustering of
keywords (or documents) [43], [44], [45]. For example, Iwata
et al. proposed the probabilistic latent semantic visualiza-
tion model (PLSV) [46] to generate a more interpretable dis-
tribution of documents by considering various visualization
criteria. However, as discussed before, such dimension
reduced representations suffer from visual distortion and
potential loss of information.

Classification. A wide variety of analysis models have
been developed to categorize data items based on a set
of predefined labels. The results from these classification
methods are most commonly visualized using projection-
based approaches [47], [48]. To reduce visual clutter,
Rheingans and Desjardins [49] aggregate the data items in
a projection view by using a heatmap that visualizes the
probability of a given class for each value combination of
two features. Seifert and Lex [50] place the labels on a cir-
cle within which data items are positioned using barycen-
tric coordinates (similar to RadVis [6]). These approaches
are all based on projection with the aforementioned
limitations.

Recently, Alsallakh et al. [51] proposed a novel visualiza-
tion method in which labels are displayed as ring sectors
containing histograms representing the classification proba-
bility of all data items. The labels are also connected by
chords whose thickness represents the classification confu-
sion between them. However, when the number of labels is
large, reading the detailed data distributions and classifica-
tion confusion statistics between labels becomes difficult.

4 VISUALIZATION DESIGN

The design of UnTangle Map seeks to overcome the chal-
lenges discussed in Section 2. Here, we discuss the design
details and rationales. We then illustrate how the design can
generatemeaningful visual patterns, andpresent a set of inter-
section functions that support additional analysis capabilities.

4.1 Design Rationale

In order to support the visual query tasks outlined above,
the key idea of our approach is to visualize item-label rela-
tionships, label summaries, and label interactions through a
set of intelligently connecting ternary plots.

A ternary plot, as illustrated in Fig. 2a, is a barycentric
plot of three variables, with each variable corresponding to
a vertex on an equilateral triangle. Typically, the three varia-
bles sum to 1.0 or 100 percent, and the position of any given
point on the triangle indicates the ratios of three variables.
UnTangle Map builds upon basic ternary plots to visualize
data items with probabilistic labels. To show items associ-
ated with three labels, we assign the labels to each of the
vertices of a triangle, and plot a data item on the ternary

1152 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 2, FEBRUARY 2016



plot at a position whose distance to each label encodes the
item’s association, represented as a probabilistic value, with
the label. For example, as shown in Fig. 2a, there are three
labels A, B, and C, plotted on the vertices. The item a is asso-
ciated with A, B, and C with probabilities 0.25, 0.5, and 0.25,
respectively. As a has stronger association with B, it is posi-
tioned at a point on the perpendicular direction of edge AC
and proportionally close to B. Another data item b is located
at the center of the ternary plot which means it is associated
with the three labels with equal probabilities of 1=3. Some-
times, different data items with same proportions to the
data labels may overlapped together (e.g. P1ð0:33; 0:33; 0:33Þ
and P2ð0:01; 0:01; 0:01Þ). We differentiate these cases by
adjusting their size and opacity based on the magnitude of
their probability vectors, where larger magnitude is
reflected by higher opacity and larger size.

When labels are more than three, we combine multiple
ternary plots where the set of vertices correspond to the set
of labels. The data items are repetitively plotted inside each
ternary plot based on their normalized probabilities associ-
ated with the three corresponding labels. Those items that
are irrelevant to all the labels of a ternary plot are removed.
The result is a mesh of connected triangles as shown in
Fig. 2b. Inside each individual triangle, the ternary plot
serves a subspace for unambiguously displaying the item-
label relationship. The connected ternary plots form a trian-
gle mesh that allows patterns to aggregate into visual
summaries of the labels. Furthermore, different label inter-
actions are captured by the patterns around the vertices and
edges that connect triangles.

The triangular design is based on the goal of avoiding
ambiguity. In particular, the three-dimensional barycentric
coordinate system in a ternary plot makes the position of
each item, representing its relative probabilistic associations
with the three corresponding labels, unambiguous in the
two-dimensional plane. In contrast, when barycentric
coordinate systems contain more than three vertices (an
n-dimensional shape with n > 3) on a 2D plane, ambiguity
is unavoidable. For example, Fig. 2c shows a data item from
a 6-dimensional space projected to 2D, after which the 2D-
distances from the vertices (labels) no longer uniquely rep-
resent the item’s true values.

4.2 Visual Patterns

The basic design presented above produces a variety of
meaningful visual patterns that support the various tasks
outlined in Section 2.

A first set of patterns, which are observed within a single
ternary plot, allow for the interpretation of item-label

relationships (Q1). As shown in Fig. 3, we identity four dis-
tinct archetypes that can help interpret the arrangement of
probabilistic data points within a ternary plot. (a) In a non-
dominant pattern the data items are distributed in the middle
of the ternary plot with equal distances to the three label ver-
tices, and none of the labels are overly associated with the
items. (b) In a uni-dominant pattern, the data items are concen-
trated at a corner where the closest label has a dominant rela-
tionship with the items. (c) In a bi-dominant pattern, the data
items are located along an edge where the two closest labels
both have strong associations with the items. (d) Finally, in a
balanced flow pattern, two labels (A andC) have equally strong
associations with data items regardless of the strength of the
third label (B). The data items in a balanced flow pattern are
distributed along an axis perpendicular to edge connecting
the two strong labels (AC) towards the third vertex (B). Note
that the uni-dominant pattern also helps support Q2, while
the bi-dominant pattern helps address Q3.

Variants of the four archetypes defined above can also be
highly informative. For example, Fig. 4a shows data items
distributed around the corners of a triangle, suggesting
each of the labels has a dominant relationship with a portion
of the data items. Fig. 4b shows data items distributed along
the edges, suggesting that each of the pairs of labels shares
a portion of items in common without a strong third-label
association. Fig. 4c shows a linear pattern parallel to the
edge AB, suggesting that the items have a relatively
constant association with the label C.

A second set of patterns can be defined when considering
pairs of neighboring ternary plots, which allow users to
interpret higher-level label interactions (Q4). As shown in
Fig. 5a, when two connected ternary plots share a vertex
(A), users can visually compare the relationship between A
and the other connected labels. For example, Fig. 5a sug-
gests the associations with label B and C are stronger with
respect to A when compared with D and E. When two trian-
gles share an edge as shown in Fig. 5b, the connected
ternary plots allows a user to compare the relationship
between two labels (e.g., A or D) given a common baseline
(BC). For example, the figure suggests that, given that data
items are associated with B and C, the association with A is
stronger than with D.

A third set of typical patterns can be seen when viewing
arrangements of multiple (more than 2) adjacent ternary

Fig. 3. Typical patterns for item-label relationship: (a) non-dominant,
(b) uni-dominant, (c) bi-dominant, and (d) balanced flow patterns.

Fig. 2. (a) A ternary plot and the 3D barycentric coordinate system. (b) A
ternary plot mesh. (a) Ambiguity is unavoidable when the number of
labels (dimensions) is larger than 3.

Fig. 4. Other patterns for item-label relationship: (a) three-corner,
(b) three-edge, and (c) constant patterns.
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plots. Such a configuration allows for the interpretation of
multi-way label interactions (Q5) as well as global label
summaries (Q2). As shown in Fig. 6, there are three different
archetypes in this category. First, (a) in a global dominant pat-
tern, the label vertex at the center appears to be uni-domi-
nant across all connected ternary plots, meaning that the
corresponding label has the strongest association with the
data items among all other present labels. Second, (b) in a
complimentary pattern, the non-dominant pattern appears in
all connected ternary plots, meaning that the data items
have relatively balanced associations across all of the pres-
ent labels. Finally, (c) in an isolated pattern, the bi-dominant
patterns appear in all connected ternary plots, with the label
at the center having the weakest association compared with
all other present labels—in other words, the center label is
isolated from the rest of present labels.

To further assist user interpretation, UnTangle Map auto-
matically scores each vertex to determine how isolated or
dominant it is with respect to its neighbors. That score is then
used to color-code the corresponding vertices. By default, red
is used to indicate an isolated label while green is used to indi-
cate a globally-dominant label. White is used for vertices that
fall in between those extremes. A gradient is used to interpo-
late between the red, white, and green color stops.

The patterns described here are able to convey many
meaningful insights about the data being visualized. How-
ever, there are some limitations in our design. First, as we
will discuss in Section 6.4, linear relationships between two
labels are not as easily captured in a ternary plot when com-
pared to a scatterplot. Second, our design is focused on the
task of visualizing the distribution of data items with proba-
bilistic labels, and therefore does not consider the visualiza-
tion of other types of variables (such as numerical or
categorical variables). These two limitations show that
UnTangle Map’s approach can compliment existing meth-
ods that more directly support these tasks. Third, because
our design relies on a grid of connected equilateral trian-
gles, each of the vertices (labels) has at most six direct neigh-
bors. This can potentially limit a user’s ability to explore
very high-order label interactions. To overcome this limita-
tion, UnTangle Map provides user interaction capabilities
that allow for the interactive customization of label place-
ments. This interactive feature is described in next section.

4.3 Interactions

UnTangle Map provides a set of interactions that further
support the process of information seeking and data
interpretation.

Smart layout. The positioning of labeled vertices can be
generated either in a data-driven manner or in a user-driven
manner. When a dataset is first loaded in the UnTangle Map
visualization, the system automatically generates an initial
layout, arranging labels on a triangle mesh according to the
internal distributions of the data items (see Section 5). This
primary view is augmented with an inset window that
shows an overview of all available data labels. By interact-
ing with these views, users can add, delete, or reconfigure
labels in the primary view. First, users can add a new label
vertex to the primary view by dragging the label from the
inset window to any empty slot in the triangle mesh. Labels
can be added more than once to the visualization, meaning
that multiple vertices may correspond to the same label.
Similarly, users can drag a label vertex already present in
the primary view from its current position to any of the
available empty slots to change its location. Vertices can be
removed by dragging them off the primary view space.

While the manual placement of labels provides users
with the greatest flexibility, automated algorithms are used
to help guide the user to a more effective visualization.
When users begin to drag a label, UnTangle Map highlights
an empty slot in red that corresponds the best position to
place the dragged label based on a data-driven, correlation-
based computation. Similarly, when users click on an empty
slot, the label that best fits (in a data-driven, correlation-
based manner) the slot is highlighted in the inset window.
The algorithm used to drive these recommendations is
described in Section 5.

Switch of correlation measure. By default, Spearman’s
correlation coefficient is used as the basis for the
algorithms within UnTangle Map. However, users are
able to select from three different correlation coefficient
functions (Pearson’s, Spearman’s, and Kendall’s) in the
toolbar to control how the underlying statistics are
computed by the system.

Brush. UnTangle Map supports two types of brushing
operations. First, users can brush the inset window to select
a set of focused labels into the primary view. Second, inside
each ternary plot, users can brush the individual data items
to highlight the same set of items in other ternary plots.

Zoom and Pan. When there are many labels, the triangle
mesh can grow large, making the size of each triangle small.
Users can zoom in to a focused ternary plot by double-click-
ing it. Users can also pan the entire mesh to navigate
through the full grid of triangular plots even when tightly
zoomed.

5 LAYOUT DESIGN AND IMPLEMENTATION

The layout process for UnTangle Map consists of two major
steps: (1) the layout of labels by connecting them in a

Fig. 5. Typical patterns for higher-level label interactions: (a) shared ver-
tex and (b) shared edge patterns.

Fig. 6. Typical patterns for multi-way label interactions: (a) global domi-
nant, (b) complimentary, and (c) isolated patterns.
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triangle grid to generate a web of three dimensional subspa-
ces, and (2) the plotting of data items inside each triangle to
generate ternary plots.

5.1 Layout Data Labels

The procedure for creating the data label layout can be bro-
ken into two steps: (1) creating a triangle grid whose verti-
ces are empty slots that will be used to place labels, and
(2) allocating labels to the slots via the optimization of an
objective function.

5.1.1 Creating Triangular Grid

We begin by creating a grid of equilateral triangles, Gs ¼
hS;Esi, based on triangular tiling.4 The vertices of the grid,
S, are empty slots used for placing labels. Es denotes the set
of edges on the triangles. In addition to creating the desired
equilateral triangles, such a grid provides efficient spatial
indexing so that the grid coordinates of each vertex (i.e.,
slot) can be easily used for allocating labels (either in a data-
driven or user-driven manner).

Theoretically, the grid can be infinitely large to support
the allocation of an unlimited number of labels. In practice,
we create a grid on a virtual plane that is several times
larger than the grid visible on the display (viewport), and
only a portion of the grid is shown on the viewport at a
given time. This virtual plane can be navigated through the
zoom and pan interaction functions as described in
Section 4.3. The size of the virtual plane is empirically deter-
mined, and we found that a grid that is five times of the
viewport is more than sufficient for practical use.

5.1.2 Allocating Labels to the Label Slots

We seek to assign labels to positions on the grid such that
nearby labels are more relevant to each other in terms of
shared data items. To achieve this, we introduce an efficient
layout optimization algorithm and a corresponding layout
objective function.

Layout objective. We design an objective function such
that correlated labels are connected or clustered on the grid.
Let the layout of m labels L ¼ fl1; . . . ; lmg on a triangle grid
be denoted as GL ¼ hV;Ei, where V ¼ fv1; . . . ; vmg is the set
of label vertices located on the grid slots S ¼ fsðv1Þ; . . . ;
sðvmÞg. To simplify the notation, we write sa as sðvaÞ, the
slot of label vertex va. E is the set of edges such that edge
e ¼ ðvi; vjÞ exists if si and sj are connected on the grid. Let T
be the set of ternary plots inGL. A ternary plot, t 2 T , is a tri-
angle on the triangle grid whose vertices represent three dif-
ferent labels respectively. Our goal is to produce a label
layout such that labels with high correlations are connected
through edges, or clustered through a mesh of connected tri-
angles. This goal is achieved bymaximizing the objective F :

F ¼ a
1

jEj
X

ðvi;vjÞ2E
cij þ ð1� aÞ 1

jT j
X

t2T
ct;

GL ¼ argmaxV;E F ;

where, a 2 ½0; 1� is a parameter that balances between two
optimization terms. The first term ensures the connections

of related label vertices in GL by maximizing the average
value of the pair-wised correlation of label vertices. The
second term preserves the cluster structure via maximizing
the average correlation of all the ternary plots in GL.

Here, cij indicates the correlation between two connected
label vertices vi and vj and ct ¼ ðcij þ cjk þ ckiÞ=3 indicates
the correlation of a triangle (a ternary plot) t whose vertices
are vi, vj, and vk, respectively. Specifically, cij can be com-
puted as the correlation of two probabilistic vectors ~pi and ~pj.
The kth element in a probabilistic vector ~pi corresponds to
the ith data item’s association with the label k in terms of the
probabilistic value. The correlation can be computed by
using Pearson correlation coefficient, or nonparametric
measures such as Spearsman’s rank correlation coefficient or
Kendall’s rank correlation coefficient. Nonparametric meas-
ures are used when the normality assumption does not hold
in the data, which is common in a probabilistic multi-label
dataset. We use Spearman’s rank correlation as default, and
provide other correlation types as user-selectable options.

Implementation.Optimizing the above layout objective is an
NP hard problem. We propose to find a solution via a greedy
algorithm as summarized inAlgorithm 1. This algorithm allo-
cates labels to slots in an iterative manner. Specifically, the
algorithm starts by placing the first label at the center slot in
the triangle grid and selecting and placing the next label by
maximizing the value of the objective function. The next label
to be placed at each iteration can be selected based on differ-
ent strategies, such as random selection or selecting the label
that ismost correlated to other labels on the grid. In our imple-
mentation, we use dynamic programming to efficiently enu-
merate all of the potential choices for label-slot assignment
to best maximize the layout function. In Algorithm 1,
utilityðG0LÞ denotes the utility value of an instance layout G0L,
which is computed based on the objective function F .

Algorithm 1. UnTangle Map Layout

Data: The label set L; The triangle slot grid Gs ¼ hS;Esi
Result: The solution triangle mesh GL ¼ hV;Ei
begin:

ubest  0; G�L  ;;
for li 2 L do
place li at the center slot s0 on Gs;
L0  L� flig; G0L  ;;
while L0 6¼ ; do
umax  0; ðl�; s�Þ  ðnull; nullÞ;
S0  get valid slotsðGs;G

0
LÞ;

R L0 � S0;
for ðlj; skÞ 2 R do
place label lj at slot sk;
update G0L;
u utilityðG0LÞ;
if umax < u then
umax  u; ðl�; s�Þ  ðlj; skÞ;

remove lj from sk;
place l� at s�;
L0  L0 � fl�g;
update G0L;

u utilityðG0LÞ;
if ubest < u then
ubest  u; G�L ¼ G0L;

return G�L;
4. http://en.wikipedia.org/wiki/Triangular_tiling
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At each iteration, the algorithm searches in the space of
R ¼ L0 � S0 to find a label-slot assignment ðli; sjÞ 2 R that
maximizes the layout objective. Here, L0 and S0 respectively
indicate the sets of all the free labels and slots, and R indi-
cates the set of all the potential label-slot assignments. In
our implementation, we accelerate this search process by
reducing the search space based on the layout constraint. In
other words, we only investigate the free slots that are able
to enclose boundary edges and generate new triangles as
shown in Fig. 8.

Finally, the algorithm terminates when all of the labels
have been placed in the triangle grid.

5.2 Plotting Data Items

Once the ternary plots are generated based on the above lay-
out algorithm, we plot the data items inside each ternary
plot based on the barycentric coordinate system. More pre-
cisely, given a position v inside a ternary plot, its (Cartesian)
coordinates can be computed through the coordinates of the
three triangle vertices:

v ¼ �1v1 þ �2v2 þ �3v3;

where v1, v2, and v3 are triangle vertices whose coordinates
are known. ð�1; �2; �3Þ are the barycentric coordinates of the
point v, subjected to the constraint

P
i2f1;2;3g �i ¼ 1. Here, �i

are given by the associations of an item with the three given
labels (l1, l2, and l3) respectively, in terms of their probabilis-
tic values, and vi is the corresponding label position. When
there are more than three labels in a dataset, the data items’
distributions with any three given labels, l1, l2, and l3 are
given by the normalized probabilities. For example, the nor-
malized probabilities of an item i associating with the three
given labels can be computed by uik ¼ pik=ðpi1 þ pi2 þ pi3Þ
for k 2 f1; 2; 3g.

Fig. 7 shows an example visualization of a DBLP dataset
by using the aforementioned algorithm. In this figure, each
ternary plot consists of 3,000 data items. This scale can slow
the rendering process and interfere with the high-speed
demands of user interaction. Overplotting from visual clut-
ter can also negatively impact legibility. This challenges
emerge as data size increases.

To address these challenges, we compute a ternary heat-
map in which data items inside a ternary plot are hierar-
chically aggregated into triangular data bins, producing a
multi-granularity representation that supports multiple lev-
els-of-detail in the visualization. Specifically, we approach
this goal by recursively splitting a triangle into four sub-tri-
angles in a top-down approach and counting the number of
data items inside each triangle as a weight. The weights are
globally normalized and represented as the opacity of the
triangle’s fill color. Fig. 9 shows an example of rendering
UnTangle Map in different levels of granularity. The
medium level of granularity balances between rendering
performance and data details and better capturing visual
patterns when compared with rough level of granularity.
Fig. 1 shows another example of applying the ternary heat-
map. Compared with Fig. 7, the spatial density of item dis-
tribution can still be clearly captured in Fig. 1, but the
heatmap allows faster rendering and interaction. We pres-
ent and discuss the scalability of this approach in Section 6.

5.3 Discussion

Both the objective function and the greedy layout algorithm
are key determinants in resulting visualizations produced
by our methods. This section provides more discussion
regarding these two critical components of our design.

Choices of objective. We investigate several design
choices that can be used to emphasize different correla-
tion patterns within the data. First, because the number
of total edges and triangles can vary, we can choose in
the objective function to optimize the averaged (Fig. 7)
instead of total correlations (Fig. 10) in both optimization
terms. This design helps to reduce the number of total
edges and triangles in GL, providing a clearer and more
informative view. Second, in the layout objective function,
we can choose to balance between two optimization terms
that capturing both pair-wised correlations and the struc-
ture of clusters at the same time. Fig. 11 illustrates the
effect of these two terms on the layout results generated
respectively based on a ¼ 1 and a ¼ 0. When choosing to
balance these terms with an equal importance (i.e.,
a ¼ 0:5), features of both terms are partially captured as
shown in Fig. 7.

Layout performance. To achieve a better maximization of
the layout objective and avoid locally optimal solutions, we
employ the stochastic hill climbing technique.5 More specifi-
cally, instead of always selecting the best label-slot assign-
ments during the update stage, the stochastic hill climbing
method probabilistically chooses alternative slots (e.g., the
second or third best). We illustrate this strategy through the
following experiment.

Fig. 7. The layout result of the DBLP dataset generated based on
Algorithm 1 and the item plotting method. Here, the two optimization
terms in the layout objective are weighted equally. The rendering can be
further enhenced by using ternary heatmaps as shown in Fig. 1.

5. http://en.wikipedia.org/wiki/Stochastic_hill_climbing
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Let P be the probability of selecting the best label-slot
assignment during the update stage. Given P , the probabil-
ity for selecting the second best or the third best are defined
equivalently as ð1� P Þ=2. To examine the impact of differ-
ent P values, we tested our layout algorithm for values of P
in the range ½0:6; 1� with an increasing step of 0.02. For each
given P , we repeated the layout procedure for 100 times,
and recorded the final utility values of the layouts in each
trail. The mean value and standard deviation corresponding
to each P are shown in Fig. 12. The results show empirically
that stochastic hill climbing most improves the layout per-
formance for 0:7 < P < 0:9.

We note, however, that while this stochastic approach
improves the layout results, the choice of the best P can
depend somewhat on the dataset. Moreover, experimentally
searching through the possible values for P to identifying
the optimal setting for a given dataset can be computation-
ally expensive. For this reason, the above strategy is sug-
gested for use only as an offline procedure when producing
more precise results is necessary.

Extension of usage. Beyond probabilistic multi-label data,
UnTangle Map can also be applied to visualize multidimen-
sional data with non-negative values. The constraint
ensures that an item0s multidimensional values are additive
and can be meaningfully normalized across different
dimensions during the process of generating barycenter lay-
out as discussed in Section 5.2. Many approaches can be
used to produce multidimensional data representation,
such as non-negative matrix factorization [52], or convert
real numbers to a desirable range, such as min-max scaling.

Fig. 9. Generating the ternary heatmap for supporting different levels of
details. The level of granularity from left to right: fine, medium and rough.

Fig. 10. The layout result by maximizing the total correlation of labels.

Fig. 8. Surrounding the ternary plot ABC, there are three valid free slots
D, E, and F that are able to enclose boundary edges of the ternary plot.

Fig. 11. Balancing between two optimization terms by a. When a ¼ 1,
the pair-wised correlations of labels are best preserved; when a ¼ 0, the
structure of label clusters is captured (the figure illustrates two primary
clusters of the input data).

Fig. 12. Layout improvement based on stochastic hill climbing.
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However, whether the attribute values across different
dimensions are additive is usually determined by the
semantics of the data.

6 EVALUATION

In this section, we present several different types of evalua-
tion results: (1) experiments that compare different layout
algorithms within UnTangle Map, and experiments that
compare UnTangle Map with alternative baseline methods;
(2) an evaluation of the scalability of our approach; (3) two
case studies conducted by an expert using real-world multi-
label datasets; and (4) a controlled user study allowing us to
quantitatively test performance with UnTangle Map against
Parallel Coordinates Plots (PCP) and scatter plot matrices.

6.1 Experiments

We conducted two experiments for comparing the layout
techniques proposed in this paper to the layout algorithm
introduced in our previous paper [7], as well as to two other
visualization designs: SPM and PCP. All of our experiments
are conducted using a dataset extracted from the computer
science bibliography database DBLP.6 The dataset includes
two types of elements: a set of authors and the conferences in
which they published papers. In this use case, we are inter-
ested in exploring how authors publish in related conferen-
ces and how conferences share common participants.
Hence, we consider the conference names as labels applied
to the authors. We compute the confidence in a given label
for each author by looking at how often that author has pub-
lished at the corresponding conference.

6.1.1 Comparison of Different Layout Algorithms

Fig. 13 shows the layout generated based on our original
layout algorithm introduced in [7]. Particularly, this

algorithm always places a label li at a slot next to an existing
edge e 2 E in GL, greedily maximizing ðcij þ cikÞ at each
layout iteration. In contrast, results from our new algorithm
are shown in Figs. 1 and 7. While both algorithms place rele-
vant conferences close to one another, we find that new cur-
rent algorithm generates a more precise representation of
the data in which research communities are more clearly
separated and reasonably connected.

In particular, Fig. 1 captures six research communities
(clusters) labeled by the numbers (1)-(6) respectively inside
two general research areas related to (a) information science
and (b) more traditional computer science. Within these
clusters, we see about 13 distinct research directions.
The clustering emerges due to the fact that conferences in
similar areas tend to share the same groups of authors.
Interestingly, the traditional database/data mining research
community (1) is split into two branches focusing on inter-
actions with two other specializations. One branch (2) con-
sists of the conferences in the field of human computer
interaction (HIC), visualization (Vis), and natural language
processing (NLP), all of which leverage human factors for
data analysis. Another branch (3) consists of the conferences
in the field of machine learning, artificial intelligence, and
multimedia, which focus on the data analysis techniques
powered by statistical/algorithmic learning. This visual
structure clearly illustrates two major directions being
actively pursued within the research community. A similar
pattern can also be found in computer science, in which
three distinct communities focusing on systems (4), algo-
rithms (5), and engineering (6) emerged. We note that these
communities were not clearly separated in Fig. 13.

6.1.2 Comparison with PCP, SPM, and PCA

We use the example shown in Figs. 14, 15, and 1 to illustrate
the advantages of UnTangle Map over PCP, SPM and PCA.
Fig. 15a shows three of the seven data mining related con-
ferences plotted using SPM. Each dot represents an author,
and the x- and y-positions on the scatterplot indicate the
probabilities of an author publishing in conferences x and y,
respectively. Since SPM is efficient for discovering pairwise
patterns, it is possible to capture which two conferences
have stronger associations. For example, by looking at the
row for the SDM conference, one can identify that SDM has
a strong association with KDD and ICDM, as we have also
shown in Fig. 14b by using UnTangle Map. However, based

Fig. 13. UnTangle Map visualization of the DBLP dataset generated
based on the layout algorithm described in [7].

Fig. 14. Author distribution among data mining related conferences.

6. http://dblp.uni-trier.de/db/
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on Fig. 15a, it is difficult to understand, overall, which con-
ference has greater associations with other conferences. The
dominance of the KDD conference among this set cannot be
easily revealed in SPM because the information, spread
across many different axes, is not easy to visually aggregate
to identify dominant labels.

Fig. 15b shows these same conferences using PCP. Each
author is plotted as a line segment crossing the axes which
correspond to the probability of the author publishing at
individual conferences. PCP is not as effective when there
are large numbers of either data items or coordinates. Yet,
with proper filtering, it is possible to discover strong associ-
ations. For example, in Fig. 15b, one can find that SDM
shares many co-participants with KDD and ICDM. How-
ever, the zero probabilities of the authors in other conferen-
ces also form strong patterns in PCP that hinders the
discovery of more useful information.

Fig. 15c shows the PCA projection of the entire DBLP
dataset. When compared with Fig. 1, the PCA view is too
cluttered for pattern detection and the position of each point
is also unclear and fails to precisely (or quantitatively)
reveal how exactly one researcher is related to different
conferences.

As shown in Fig. 14, UnTangle Map is able to resolve
these issues. On one hand, the ternary meshes allow data
items to scatter over the probability value space; on the
other hand, the meshes connected by labels (similar to axes
or coordinates) allow patterns to be visually aggregated and
form a visual summary of the labels.

6.2 Scalability Improvement via Ternary Heatmap

We evaluate the performance of updating and rendering the
UnTangle Map at three different levels of granularity
(rough, medium, and fine) based on the ternary heatmap
rendering approach. Here, as shown in Fig. 9, “rough” indi-
cates each ternary plots is portrayed by four sub-triangular
bins, “medium” indicates 12 sub-triangular bins, and “fine”
indicates the raw data items without using heatmap. Our
experiments are based on the DBLP dataset described
above, and we select subsets of data items with sizes rang-
ing from ½500; 3;000� with an increasing step of 500. Fig. 16a
reports the performance (in rendering time) of updating a
visualization at each of the three levels of granularity. The
results show that the time grows linearly with the number
of data items. Fig. 16b reports the rendering time only. This
shows that rendering time remains constant as the number
data items increase for the heatmap-based approaches
(rough and medium).

6.3 Case Studies

This section presents two use cases that demonstrate the
ways in which UnTangle Map can help identify patterns in
real-world datasets. These cases are manually generated by
an expert user by using the interactions supported in
UnTangle Map.

6.3.1 Use Case: DBLP Data

When drilling in to a specific set of conferences in the
DBLP data through interaction, we can explore the co-par-
ticipants among data-mining conferences. Fig. 14 shows six
data mining conferences along with a database conference
(ICDT) that has some ties to the data mining community.
When ICDT is placed in the middle, as seen in Fig. 14a,

Fig. 15. Visualizing author distribution through (a) scatterplot matrix,
(b) parallel coordinates plot, and (c) PCA projection.

Fig. 16. Performance testing of UnTangle heatmap. (a) the performance
of heatmap updating (regenerate data bins and recompute the data den-
sity distribution on top of these bins) (b) the performance of rendering.
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most author dots are found away from the center. This
indicates that ICDT is relatively isolated compared to the
data mining conferences. When centered on SDM
(Fig. 14b), strong linear patterns appear along the edges
connecting SDM with ICDM and KDD. This indicates that
SDM frequently shares common participants with those
two conferences. The evenly distributed dots on the KDD-
centered mesh suggest that many authors who published
in other data mining conferences also published in KDD
(Fig. 14c). Another two conferences, WWW and CIKM,
also share a lot of authors with other conferences, but have
fewer authors in common with SDM (Figs. 14d and 14e)).
The ICDM-centered mesh also exhibits evenly distributed
patterns (Fig. 14f), but the dots around the center are
sparser than those in the KDD-centered mesh. This sug-
gests that ICDM is less dominant than KDD—there are a
number of authors who have primarily published in KDD,
but fewer who have only published in ICDM.

This exploration suggests how UnTangle Map can be
used to explore the interaction among conferences based on
the distribution of co-participating authors.

6.3.2 Use Case: NIH Data

In the second example, we use data downloaded from the
NIH Map Viewer.7 The data consist of information about
grants awarded by the National Institutes of Health, includ-
ing the awarded universities and topics associated with the
grants (the topics are identified using Latent Dirichlet
Allocation [38]). Here we focus on the relationship of topics
and universities. We plot the universities as dots on the
meshes of topics, based on the normalized topic proportions
given by the topic modeling. In this case, we consider topics
as probabilistic labels.

Figs. 17a and 17b show the distribution of universities
among topics related to cancer, genetics and system biology
related research, based on the grants awarded in the years
of 2011 and 2013, respectively. By comparing the two plots,
we observe that the topic “structural protein binding” was
more dominant 2011 because the dots surrounding this
topic appear to be sparser on the 2013 mesh. One of the uni-
versities we observe having such topical shift in awarded
grants is Stanford University, which was placed closer to
“structural protein binding” in 2011 but farther away in
2013 (Figs. 18a and 18b). Other topics are relatively stable,

with some universities appearing to have increasingly
strong interests in the topic “single nucleotide poly-
morphisms” (Figs. 17a and 17b).

6.4 User Study

To evaluate both the benefits and limitations of UnTan-
gle Map, we conducted a formal user study that com-
pared user performance on five distinct tasks using
UnTangle Map and two commonly used baseline visuali-
zation techniques: scatter-plot matrices and parallel
coordinate plots (PCP). In this section, we review the
methodology we employed in our study and present a
discussion of our key findings.

6.4.1 Study Setup

We conducted a formal user study to evaluate how well the
UnTangle Map method supported five specific visual com-
prehension tasks. We recruited 10 people to participate in a
within-subjects study comparing three distinct visualization
techniques: UnTangle Map, SPM, and PCP. The ages of the
participants ranged from 26 to 40, all were college educated,
and four of 10 were female.

As is typical of a within-subjects study, each of the 10
participants was asked to perform each of the five tasks
multiple times, once for each of the three visualization tech-
niques being tested (UnTangle Map, SPM, PCP). Each of the
three visualization types were provisioned with the same
set of user interaction capabilities for label selection, axis
reordering, and interactive brushing. For each task, we
selected a single dataset for analysis (using one of the real
data sets described in Section 6.3). We used the same dataset
with all three visualization types for a given task to ensure a
fair comparison. However, to avoid learning effects and to
prevent users from applying background knowledge to
solve the tasks, we replaced semantically meaningful label

Fig. 17. University distribution among NIH-funded grant topics in year
2011 and 2013.

Fig. 18. An example of topic shift: Stanford University was positioned
closer to the topic “structural protein binding” in 2011 than in 2013.

Fig. 19. Results for each of the five user study tasks (T1-T5) using
UnTangle Map (UT), SPM, and PCP: (a) average response time
measured in seconds, and (b) average response accuracy.7. https://app.nihmaps.org/
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names (e.g., conference names) with neutral identifiers (e.g.,
“I23”) that were randomly re-assigned between treatments.
This approach ensured that, for each of the three visualiza-
tion types for a given task, users were answering the same
question using the same data, but were unable to learn the
correct answers.

Each of the 10 study sessions followed the same proce-
dure. Subjects were first introduced to the study and shown
an example of a probabilistic multi-label dataset. Next,
participants were given brief lessons for each of the three
visualization tools. This included lessons on basic interac-
tion with the tools and techniques for visually identifying
patterns. Then users were given equal time to practice with
each of the three visualization types.

Data were then collected for the five official study
tasks. Each task was repeated three times, once for each
of the tested visualization tools. Speed and accuracy were
recorded for each task. If a user gave up on a task, the
time was listed as 120 seconds, a time roughly equal to
the maximum time spent by a user on any single task in
our experiments. This occurred three times out of a total
of 150 individually performed and measured tasks. A
post-study questionnaire was completed at the conclusion
of each session to gather subjective feedback from the
study participants.

6.4.2 Study Tasks and Results

Every participant in the user study was asked to perform
five different comprehension tasks. Importantly, the chosen
study tasks, summarized in Table 1, were not selected to be a
comprehensive representation of all types of questions that
analysts might ask when analyzing probabilistic multi-label
dataset. Rather, the five tasks capture a subset of common
tasks for which we hypothesized that UnTangle Map would
be particularly well (T1-4) or poorly (T5) suited. In this way,
the study was designed to identify strengths and weak-
nesses of the proposed approach, helping to frame where
the method can be used to compliment capabilities provided
by other existing techniques. All the statistics reported
below are based on the paired t-test (for within-subject
study) and they verified all our hypothesizes (see Fig. 19).

T1: Isolated label identification. In this task, users were
asked to identify the label that was most isolated from the
rest of the dataset. That is, the label for which the most data
points had the lowest probabilities. For example, in the
DBLP dataset where labels represent conferences, the iso-
lated conference would be the one at which the set of
authors were least likely to publish. This task was accu-
rately performed with all three visualization tools included
in the study. Accuracy rates were all 70 percent or above

with no statistically significant difference. However, more
meaningful differences were found in task completion time.
Users performed significantly faster (p < 0:05) with UnTan-
gle Map than with either SPM or PCP, both of which exhib-
ited similar timings. This tells us that while all three tools
support T1, UnTangle Map required the least mental proc-
essing to arrive at the correct answer.

T2: Conditional probability with one prior. In this task, users
were asked to identify which of two labels had, overall, a
stronger probability given a prior relationship to a third
label. For example, in a dataset of paper authors where
labels represent conferences, users might want to know at
which of two different conferences are authors most likely
to publish given that we know that they already published
in a third conference. We hypothesized that this type of task
was especially well suited for UnTangle Map given the tri-
angular representation of the axes, and the speed measure-
ments provided statistically significant (p < 0:05) evidence
when compared against either SPM or PCP. Similar to the
results of T1, while users indeed performed the tasks faster
with UnTangle Map, accuracy rates did not show any
significant variation as the task, in general, was correctly
performed across all three tools.

T3: Conditional probability with two priors. Like task T2, this
task focused on conditional probability. However, this time
users were asked to consider problems with two priors
(e.g., authors known to publish at two conferences). Users
with UnTangle Map could answer this question by examin-
ing two neighboring triangles that share a side defined the
two priors. This capability resulted in statistically faster task
completion times (p < 0:05) for UnTangle Map when com-
pared to either PCP or SPM. Once again, there was no statis-
tical difference in terms of accuracy. For both T2 and T3, the
accuracy measurements were somewhat unexpected. We
had hypothesized that task accuracy for conditional proba-
bility tasks would be higher with UnTangle Map. However,
the results did not show any statistically meaningful differ-
ences. The accuracy gap was diminished in part, we believe,
by much longer times (approximately triple) spent answer-
ing questions when using either PCP or SPM. We speculate
that in many practical settings, where time does not allow
users to meticulously investigate a specific question, PCP
and SPM would indeed be more prone to errors.

T4: Dominant label identification. In this task, users were
asked to identify which label was most strongly repre-
sented, in that it dominated the probabilities compared to
other labels. For example, in the DBLP dataset where labels
represent conferences, the dominant label would be the one
at which authors, in general, are most likely to publish.
Interestingly, results for this task showed a strong benefit
for UnTangle Map in terms of both speed (p < 0:05

TABLE 1
The Five Comprehension Tasks Performed by Subjects in Our Evaluation

Task Aim Description

T1 Isolated label Which label, overall, is the weakest component in the probability vectors?
T2 Conditional probability, 1 prior Given A, which has a stronger probability: B or C?
T3 Conditional probability, 2 priors Given A and B, which has a stronger probability: C or D?
T4 Dominant label Which label, overall, is the strongest component in the probability vectors?
T5 Pairwise correlation Which label most strongly reflects linear correlation with a given label A?
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compared to PCP) and accuracy (p < 0:05 compared to both
PCP and SPM). We believe that the better performance is
due to the spatial arrangement produced by the UnTangle
Map layout algorithm, in which triangles are positioned
radially around a point representing an individual label.
Users were able to accomplish task T4 with UnTangle Map
by visually searching for clusters of points gathered around
a single vertex. In comparison, PCP and SPM required users
to work to mentally integrate information located in various
regions of the visualization before arriving at an answer.

T5: Pairwise correlation. In this task, users were asked to
identify the pair of labels with the strongest linear correla-
tion. This task was chosen to test our hypothesis that pair-
wise correlation was a feature for which UnTangle was
especially poorly suited. The results of our study confirmed
this limitation. SPM was better than UnTangle (p < 0:05) in
terms of accuracy, and better than PCP in terms of speed
(p < 0:05). As one would expect, SPM was clearly the right
tool for identifying and comparing pairwise correlations.

6.4.3 Qualitative Feedback

The formal tasks provided quantitative data to compare
UnTangle with both PCP and SPM techniques. To compli-
ment these measurements, we asked each study participant
to complete a short post-study questionnaire in which we
asked for qualitative feedback about the different visualiza-
tion tools. In general, feedback regarding UnTangle was
positive. In terms of ease of interpretation, users gave a
usability score of 6.2 out of 7. Similarly, users found the tool
were useful, responding with an average 6.1 out of 7. When
comparing to both SPM and PCP, users felt strongly that
UnTangle conveyed certain insights that were harder to see
in other tools (6.5 of 7 for SPM, 6.6 of 7 for PCP).

The features most frequently identified as valuable for
UnTangle were (a) an overview of correlations at a glance, (b)
the ability to show relationships along more than two labels.
Participants were nearly unanimous in identifying the most
significant limitation of UnTangle: pairwise linear correla-
tionswere hard to detect. This is directly reflected in the quan-
titative study results aswell, as seen in the T5 results.

Another limitation identified in the questionnaire was
the limit of six neighboring labels in UnTangle visualiza-
tions due to the regular grid used for vertex layout. Fortu-
nately, this issue can be alleviated as users become more
familiar with the interaction functions and learn to dynami-
cally manipulate the label positions.

7 CONCLUSION

In this paper, we presented a novel design, UnTangle Map,
for visualizing data with probabilistic labels. Our design
extends the traditional ternary plot into an interactive mesh
of triangles in order to effectively show item-label relation-
ships, and to enable the scattering patterns of items to
aggregate into a visual summary of the underlying labels.
In addition to the basic design, we described a number of
archetype patterns and their interpretations. We also dem-
onstrated, using three real-world probabilistic multi-label
datasets, how our design provides a synoptic view of the
data and, at the same time, helps identify meaningful rela-
tionships between items and labels. User evaluation results

were presented, indicating our design outperforms two
widely-used baseline tools in several information-seeking
tasks performed with probabilistic multi-label data. Never-
theless, our design has limitations, especially in identifying
pairwise linear relationship between labels. As part of our
future work, we plan to extend UnTangle Map’s capability
of addressing more related information seeking and com-
parison tasks, and a more comprehensive user study to
evaluate these extended capability. We will also explore the
combination of UnTangle Map with other visualization
techniques (such as scatter plots, bar charts and line graphs)
in order to facilitate the exploration of probabilistic labels in
combination with other types of variables (e.g., numerical
and categorical).
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