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Fig. 1. Outflow processes temporal event data and visualizes aggregate event progression pathways together with associated statis-
tics (e.g. outcome, duration, and cardinality). Users can interactively explore the paths via which entities arrive and depart various
states. This screenshot shows a visualization of Manchester United’s 2010-2011 soccer season. Green shows pathways with good
outcomes (i.e., wins) while red shows pathways with bad outcomes (i.e., losses).

Abstract—Event sequence data is common in many domains, ranging from electronic medical records (EMRs) to sports events.
Moreover, such sequences often result in measurable outcomes (e.g., life or death, win or loss). Collections of event sequences can
be aggregated together to form event progression pathways. These pathways can then be connected with outcomes to model how
alternative chains of events may lead to different results. This paper describes the Outflow visualization technique, designed to (1)
aggregate multiple event sequences, (2) display the aggregate pathways through different event states with timing and cardinality, (3)
summarize the pathways’ corresponding outcomes, and (4) allow users to explore external factors that correlate with specific pathway
state transitions. Results from a user study with twelve participants show that users were able to learn how to use Outflow easily with
limited training and perform a range of tasks both accurately and rapidly.

Index Terms—Outflow, information visualization, temporal event sequences, state diagram, state transition.

1 INTRODUCTION

Life can often be described as a series of temporal events. These events
contain rich information that, when put together into event sequences,
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can define history, reveal insightful facts, or lead to discoveries. Col-
lections of event sequences are growing rapidly throughout many areas
such as electronic medical records (EMRs), sports events, call centers,
transportation incident logs, and student progress reports. In addition,
many event sequences have associated outcomes. For example, out-
comes for EMR data could be measured by cost, mortality or discharge
rates. For sports, an outcome could be a win, loss or draw.

Analyzing common patterns, or pathways, in a set of event se-
quences can help people better understand aggregate event progres-
sion behavior. In addition, connecting these pathways to their associ-
ated outcomes can help data analysts discover how certain progression
paths may lead to better or worse results.

For example, consider a medical dataset containing information
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about a set of patients with a dangerous disease. Each patient is de-
scribed by an outcome measurement (e.g., if they survived the disease
or not) and an event sequence containing the date that certain symp-
toms were first observed by a doctor. An analysis of pathways in such
a dataset might lead to the discovery that patients with symptoms A, B
and C were likely to die in the hospital while patients with symptoms
A, B and D were more likely to recover.

Similarly, consider a dataset representing a set of soccer matches
where goals are events and wins are considered a good outcome. An
analysis of pathways in this dataset could help answer questions such
as, “Does a team win more often when it comes from behind?”

While analyzing event sequence data as described above can help
answer many questions, there are often external factors—beyond the
set of event types that define an event sequence—that make an analy-
sis even more complex. Such factors, such as the administration of a
drug to a sick patient, or a soccer player receiving a red card (which
leaves his/her team short-handed), can often change the course of sub-
sequent events. These factors must be incorporated into an analysis to
understand how they influence outcomes.

Finally, event collections can be massive. Major healthcare insti-
tutions have millions of medical records containing millions of event
sequences, and these sequences can have many different event types.
The scale and variability of this problem can lead to an extremely com-
plex set of pathways for many scenarios. For example, even for a small
data set with just five event types and where each event sequence has
just five events, there are 3,125 (55) possible pathways. This vast
amount of information can be overwhelming and makes these datasets
difficult to analyze.

To address these challenges, we have designed Outflow, an inter-
active visualization that combines multiple event sequences and their
outcomes into a graph-based visual representation. Outflow can sum-
marize collections of event sequences and display all pathways, time
gaps between each step, and their associated outcomes. Users can in-
teract with the visualization through direct manipulation techniques
(e.g., selection and brushing) and a series of control widgets. The
interactions allow users to explore the data in search of insights, in-
cluding information about which factors correlate most strongly with
specific pathways. An early prototype [32] of our approach received
positive feedback and requests for extensions.

This paper describes the Outflow visualization in more detail by ex-
plaining key layout methods behind the visualization. We also intro-
duce two important extensions—simplification and factor analysis—
which were developed in response to preliminary feedback. We illus-
trate the generalizability of Outflow by discussing two applications (a
medical use case and a sports statistics use case) and demonstrate its
power via a formal user study. The key research contributions pre-
sented in this paper are as follows:

• An approach to aggregate and visualize multiple event sequences
and their outcomes, called Outflow, that allows for the visual
analysis of event progression pathways and their associated prop-
erties (including timing, cardinality, and outcomes).

• A multi-step layout process for Outflow graphs that reduces edge
crossing and straightens unnecessarily curvy edges while pre-
venting overlaps. We believe that a part of this process can be
applied to directed acyclic graphs in general.

• A set of interaction techniques for exploring the Outflow visual-
ization, including navigation, simplification, and correlated fac-
tor analysis.

• Results and discussion from a study evaluating user performance
for a set of event sequence analysis tasks.

The remainder of this paper is organized as follows. Section 2
presents two motivating applications and is followed by a review of
related work in Section 3. The Outflow design is discussed in Sec-
tion 4. We then report the results of our evaluation in Section 5 and
conclude in Section 6.

2 MOTIVATION

Outflow provides a general solution for a class of event sequence anal-
ysis problems. This section describes two examples from different ap-
plication domains which served as motivating problems for our work.

2.1 Congestive Heart Failure (CHF)

Outflow was originally inspired by a problem faced by a team of car-
diologists. They were working to better understand disease evolution
patterns using data from a cohort of patients at risk of developing con-
gestive heart failure (CHF). CHF is generally defined as the inability
of the heart to supply sufficient blood flow to meet the needs of the
body. CHF is a common, costly, and potentially deadly condition that
afflicts roughly 2% of adults in developed countries with rates growing
to 6-10% for those over 65 years of age [15]. The disease is difficult
to manage and no system of diagnostic criteria has been universally
accepted as the gold standard.

One commonly used system comes from the Framingham
study [14]. This system requires the simultaneous presence of at least
two major symptoms (e.g., S3 gallop, Acute pulmonary edema, Car-
diomegaly) or one major symptom in conjunction with two minor
symptoms (e.g., Nocturnal cough, Pleural effusion, Hepatomegaly).
In total, 18 distinct Framingham symptoms have been defined.

While these symptoms are used regularly to diagnose CHF, our
medical collaborators are interested in understanding how the various
symptoms and their order of onset correlate with patient outcome. To
examine this problem, we were given access to an anonymized dataset
of 6,328 patient records. Each patient record includes timestamped en-
tries for each time a patient was diagnosed with a Framingham symp-
tom. For example:

Patient#1:(27 Jul 2009, Ankle edema), (14 Aug 2009, Pleural effusion), ...

Patient#2:(17 May 2002, S3 gallop), (1 Feb 2003, Cardiomegaly), ...

The dataset also contains information about medication orders and
patient metadata. Available metadata includes date of birth, gender,
date of CHF diagnosis, and (when applicable) date of death.

In line with the use of Framingham symptoms for diagnosis, we as-
sume that once a symptom has been observed it applies perpetually.
We therefore filter the event sequences for each patient to select only
the first occurrence of a given symptom type. The filtered event se-
quences describe the flow for each patient through different disease
states. For example, a filtered event sequence symptom A→ symptom
B indicates that the patient’s flow is no symptom → symptom A →
symptoms A and B. We used the presence (or lack thereof) of a date
of death as an outcome measure (dead or alive).

Our inspirational task was to examine aggregated statistics for the
flows of many patients to find common disease progression paths. In
addition, we wanted to discover any correlations between these paths
and either (1) patient outcomes (i.e. mortality) or (2) external factors
(i.e. medications).

2.2 Soccer Result Analysis

Although originally inspired by the medical application outlined
above, Outflow itself is not domain specific and can generalize to other
application areas. To demonstrate the broad applicability of our work,
we have also used Outflow to analyze soccer match results. For ex-
ample, Fig. 1 shows an Outflow visualization of the 2010-2011 season
for Manchester United Football Club (Man U.), an English Premier
League soccer club. Man U. has won the most trophies in English soc-
cer, including a record 19 league titles and a record 11 FA Cups. It is
one of the wealthiest and most widely supported teams in the world.

The 2010–2011 season was another successful one for Man U. in
which they won multiple trophies. To better understand their route to
success, we collected data from all 61 matches that Man U. played
that season. For both Man U. and their opponents, we captured time-
stamped events for every kickoff, every goal scored, and every final
whistle. We also recorded the outcome for every match (win, loss, or
draw) along with timestamped records of every yellow and red cards.
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Fig. 2. Multiple temporal event sequences are aggregated into a repre-
sentation called an Outflow graph. This structure is a directed acyclic
graph (DAG) that captures the various event sequences that led to the
alignment point and all the sequences that occurred after the alignment
point. Aggregate statistics are then anchored to the graph to describe
specific subsets of the data.

As in the healthcare case, events are cumulative. Each time a goal
is scored, it is added to the scoreline with the goal tally increasing
over the course of a match. Using Outflow, sports analysts are able
to see the average outcome associated with each scoreline, find the
average time to the next goal, predict what is likely to occur next, and
understand how non-goal factors, such as red cards, can impact how a
match may progress. This use case is the one tested in our evaluation
where users were asked to perform many of these tasks. The study
design and results are described in detail in Section 5.

3 RELATED WORK

Temporal data takes many forms and a wide variety of research efforts
have explored novel ways of tackling problems in this area. These
include work on event sequence visualizations, state diagram visual-
izations, and flow visualizations.

3.1 Temporal Event Sequence Visualizations
A number of researchers have explored visualization techniques for
temporal event sequences. In the early years, many systems focused
on visualizing a single record [1, 2, 3, 7, 11, 12, 20]. The most com-
mon approach is to place events on a horizontal timeline according
to the time that events occurred. Later, attention shifted towards vi-
sualizing multiple records in parallel. One popular technique is to
stack instances of single-record visualizations and to provide addi-
tional functionality for searching [9, 28, 29, 30, 34, 35], filtering [30],
and grouping [6, 18]. However, as the event sequences databases be-
come larger, techniques that can provide abstractions of multiple event
sequences are needed. More recently, a technique called LifeFlow [33]
introduced a way to aggregate and provide an abstraction for multiple
event sequences. LifeFlow’s aggregation combines multiple event se-
quences into a tree. The Outflow technique described in this paper
will combine multiple event sequences into a graph. The graph-based
representation makes it easier to compare alternative paths to the same
state. Outflow also integrates outcome statistics which are not part of
LifeFlow’s design.

3.2 State Diagram Visualizations
Our approach aggregates event sequences into an Outflow graph which
is analogous to a state diagram [5] or state transition graph. State di-
agrams are used in computer science and related fields to represent a
system of states and state changes. State diagrams are generally dis-
played as simple node-link diagrams where each state is depicted as
a node and transitions are drawn as links [4]. Many visualizations of
state diagrams have been developed [4, 21, 22, 27, 31]. These typically
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Fig. 3. Outflow visually encodes nodes in the Outflow graph using ver-
tical rectangles. Edges are represented using two distinct visual marks:
time edges and link edges. Color is used to encode average outcome.

focus on multivariate graphs where a number of attributes are associ-
ated with every node. Variants on traditional state diagrams have also
been explored, such as Petri nets (also known as a place/transition net
or P/T net) [17], which offer a graphical notation for stepwise pro-
cesses that include choice, iteration, and concurrent execution. How-
ever, to the best of our knowledge, these approaches do not display
or allow easy comparison of the transition time, which is one of Out-
flow’s design goals.

3.3 Flow & Parallel Coordinates Visualizations
Another group of visualizations called Sankey Diagrams [10, 23] was
designed to visualize flow quantities in process systems. van den Elzen
and van Wijk [26] also apply a technique similar to Sankey Diagrams
for visualizing decision trees. However, they focus on displaying the
proportion of the flow that splits in different ways, without showing
temporal information about each transition. The visual display of Out-
flow also looks similar to parallel sets [13], but the underlying data
types are different. Parallel coordinates are used for multidimensional
data while Outflow was designed for temporal event sequences.

During the development of Outflow, Google introduced “Flow Vi-
sualization” [16] as part of Google Analytics to show the sequences of
pages that visitors flow through website. This visualization, however,
does not include time gaps between each step in the visual display and
events are not accumulated.

4 DESCRIPTION OF THE VISUALIZATION

Outflow’s design consists of four key elements: data aggregation, vi-
sual encoding, graph layout and drawing methods, and user interac-
tion. This core design is then expanded to support two important ex-
tensions: simplification and factors.

4.1 Data Aggregation
The first step in creating an Outflow visualization is data aggregation.
An entity E (e.g., a patient record) contains a series of timestamped
events (e j). Our technique can aggregate multiple entities under the
following assumptions: (1) Events are persistent. (2) The order of
events does not matter when determining if two or more entities should
be aggregated. For example, both use cases in Section 2 exhibit these
properties.

To begin aggregation, we treat each entity as a progression pathway
through different states (Si) with transitions between states Sm and Sn
denoted as Tm→n. Each state is defined as a set of zero or more events
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that an entity has experienced at or before time ti,

E = (S0, t0)→ (S1, t1)→ (S2, t2)→ (S3, t3)→ . . .→ (Sn, tn)
Si = [e1,e2,e3, . . . ,ei]

Given a collection of entities, {E}, we choose one state (which must
be experienced by all E ∈{E}) as an alignment point. For example, we
can align a set of medical records around a state where all patients have
the same three symptoms (and no other symptoms). After choosing
an alignment point1, we aggregate all entities that pass through the
alignment point into a data structure called an Outflow graph (Fig. 2).

An Outflow graph is a state diagram expressed as a directed acyclic
graph (DAG). A node is added to the graph for each unique state
observed in {E} (e.g., a node for each unique combination of co-
occurring symptoms). Edges represent each state transitions observed
in {E}, and they are annotated with various statistics: the number of
entities that make the corresponding transition, the average outcome
for these entities, and the average time gap between the states.

Therefore, an Outflow graph captures all event paths in {E} that
lead to the alignment point and all event paths that occur after the
alignment point. In the medical analysis example, users can select
a target patient from the database and use the target patient’s cur-
rent state as the alignment point. This approach allows for the anal-
ysis of historical data when considering the possible future progres-
sion of symptoms for the selected target patient. In the soccer analy-
sis, users can align by a state with a specific score (e.g., 2-1), which
would include only matches that, at some point in time during the
game, reached the specified state (e.g., two “Score” and one “Con-
cede” events). This could be useful for prediction from historical data.

This approach to aggregation produces a graph whose size is inde-
pendent of the numbers of records. Instead, the size of the graph is
dependent on the number of states in the dataset. The representation
can therefore scale well to handle large numbers of records assuming a
manageable state space. For example, one dataset that has nine records
and another dataset that has nine million records may have the same
number of states and could therefore be displayed using a comparable
amount of screen space.

4.2 Visual Encoding

Based on the information contained in the Outflow graph, we have de-
signed a rich visual encoding that displays (1) the time gap for each
state change, (2) the cardinality of entities in each state and state tran-
sition, and (3) the average outcome for each state and transition. Draw-
ing in part on prior work from FlowMap [19] and LifeFlow [33], we
developed the visual encoding shown in Fig. 3.

Node (State): Each state is represented by a rectangle whose height
is proportional to the number of entities.

Layer: We slice the graph vertically into layers. Layer i contains
all states with i events. The layers are sorted from left to right, show-
ing information from the past to the future. For example, in Fig. 1,
the first layer (layer 0) contains only one node, which represents all
records before any event. The next layer (layer 1) also has one node
because all games begin with a “Kick off” event. Layer 2, however,
has three nodes because each game evolved in one of three different
ways: “Score”, “Concede”, or “Final whistle”.

Edge (Transition): Each state transition is displayed using two vi-
sual marks: a time edge and a link edge. Time edges are rectangles
whose width is proportional to the average time gap of the transition
and height is proportional to the number of entities. Link edges con-
nect nodes and time edges to convey sequentiality.

End Edge: Not all entities end in the same state. We use a trapezoid
followed by a circle to mark these endpoints. Like transition edges, the
height of the trapezoid is proportional to the number of entities that
end at the corresponding state. The circles are included to ensure that
small end edges remain visible.

1The system uses S0 (the state where no events have occurred) as the default
if no other alignment point is specified.
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Fig. 5. A spring-based optimization algorithm is used to obtain straighter
(and easier to read) edges. Nodes and edges are simulated as parti-
cles and springs, respectively. Spring repulsions are inserted between
nodes. During the optimization, nodes are gradually moved along a
vertical axis to reduce the spring tension in their edges.

Color-coding: Colors assigned to edges are used to encode the av-
erage outcome for the corresponding set of entities. The outcome val-
ues are normalized to the [0,1] range with higher values representing
better outcomes. The normalized values are then mapped to a color
scale. In our prototype, the color-coding scales linearly from red (out-
come of 0) to yellow (0.5) to green (1). The color scale can be adjusted
to accommodate users with color vision deficiency.

4.3 Graph Layout and Drawing Methods
Graphs with many nodes and edges can be difficult to visualize due
to possible edge crossings and overlapping visual marks. We apply
several techniques to emphasize connectivity and reduce clutter in the
visualization.

4.3.1 Bézier Curve
Each link edge is drawn as a cubic Bézier curve to emphasize the con-
nectivity and flow of the paths in the visual display. We make the
control line from the origin point to the first control point perpendic-
ular to the origin node, and the control line from the destination point
to the second control point perpendicular to the destination node. As
shown in Fig. 4, this ensures that the edges are horizontal at both the
start and end.

4.3.2 Sugiyama’s Heuristics
Outflow initially sorts nodes and edges in each layer according to their
outcomes. However, this often leads to unnecessarily complex visual-
izations because of edge crossings. Therefore, we apply Sugiyama’s
heuristics [25], a well-known graph layout algorithm for DAGs, to re-
order the elements in each layer to reduce edge crossings. Fig. 6a and
6b show example layouts of the same data before and after applying
Sugiyama’s heuristics, respectively.

4.3.3 Force-directed Layout
Once the order of nodes in a layer has been determined, the next step
is to calculate the actual vertical position for each node. Positions are
initially assigned by distributing the nodes equally along a layer’s ver-
tical axis. However, this method often results in unnecessarily curvy
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Fig. 6. A multi-stage layout process improves legibility. (a) Initial layout after sorting edges by outcome. (b) After applying Sugiyama’s heuristics to
reduce crossings. (c) The final visualization after both Sugiyama’s heuristics and Outflow’s force-directed algorithm to obtain straighter edges.

paths (Fig. 6b) that make the visualization more difficult to follow. To
produce straighter paths, we apply a spring-based force-directed opti-
mization algorithm [8] that reduces edge curvature. As illustrated in
Fig. 5, nodes and edges are simulated as particles and springs, respec-
tively. To prevent nodes from getting too close to each other, spring
repulsions are also inserted between nodes. Through a series of it-
erations, nodes are gradually moved along the layer’s vertical axis to
reduce the spring tensions. The optimization stops either when the en-
tire spring system is stable or when a maximum number of iterations
has been reached. Fig. 6c shows the an improved visualization with
straightened edges obtained by applying this force-directed algorithm.

4.3.4 Edge Routing
When large time differences exist between two alternative paths, time
edges and link edges can overlap (Fig. 7a). This can make it more
difficult for users to trace paths through the visualization during an
analysis. We resolve this issue by routing link edges through an inter-
mediate point that avoids crossings (Fig. 7b). The intermediate point is
calculated by (1) finding the longest time edge from n neighbor edges
in the direction traveled by a link edge (up/down), and (2) moving the
origin of the link edge horizontally beyond the longest time edge’s
x position. This method does not guarantee avoidance for neighbors
further than n. However, in practice, a low value of n (e.g., n = 3) pro-
vides effective reduction in overlaps without excessive edge routing.

4.4 Basic Interactions
To allow interactive data exploration, we further designed Outflow to
support the following user interaction capabilities.

Panning & Zooming: Users can pan and zoom to uncover detailed
structure.

Filtering: Users can filter both nodes and edges based on the num-
ber of associated entities to remove small subgroups.

Event Type Selection: Users can select which event types are used
to construct the Outflow graph. This allows, for instance, for the omis-
sion of events that users deem uninteresting. For example, users in
our medical use case can include/exclude a symptom (e.g., “Ankle
Edema”) if they deem it relevant/irrelevant to an analysis. In response,
the visualization will be recomputed dynamically.

Brushing: Hovering the mouse over a node or an edge will high-
light all paths traveled by all entities passing through the correspond-
ing point in the Outflow graph (Fig. 8).

Tooltips: Hovering also triggers the display of tooltips which pro-
vide information about individual nodes and edges. Tooltips show all
events associated with the corresponding node/edge, the average out-
come, and the total number of entities in the subgroup (Fig. 8).

Pinning: Users can “pin” a node or edge to freeze the brushed se-
lection. This interaction is performed by clicking on the element to be
pinned. Users can then move the mouse pointer to display tooltips for
brushed subsets. This allows the quick retrieval of information about

(a)

(b)

Fig. 7. Edge routing prevents overlaps between time and link edges. (a)
A link edge is seen passing “behind” the time edge above it. Outflow’s
edge routing algorithm extends the link edge horizontally beyond the
occluding time edge. (b) The new route avoids the overlap and makes
the time edge fully visible.

subsets that satisfy two constraints. For example, a user in our soccer
use case can pin soccer games that reached a 2-2 score before moving
the mouse pointer to hover over the 1-0 state to see detailed informa-
tion about the set of matches that pass through both nodes.

4.5 Simplification

The methods outlined earlier in this section can significantly reduce
visual clutter and make the visualization more legible. However, there
are still situations when visual complexity arises due to inherent com-
plexity in the underlying data. To enable analyses of these more chal-
lenging datasets, Outflow includes a simplification algorithm that ac-
tively simplifies the underlying graph structure used to construct the
visualization.

We apply a hierarchical clustering method that reduces the number
of states in an Outflow graph by merging similar states within the same
layer. States with a similarity distance less than a user-specified thresh-
old are grouped together, while states that do not satisfy the thresh-
old remain distinct. The user controls the threshold via a slider on
the user interface. Our prototype defines the similarity distance be-
tween two states as the difference in average outcomes (Equation 1).
nodei.outcome denotes an average outcome within nodei. Alternative
measures could be easily substituted (e.g., a similarity-based metric
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Fig. 8. Interactive brushing allows users to highlight paths emanating from specific nodes or edges in the visualization. This allows users to quickly
see alternative progression paths taken by entities passing through a given state.

using application-specific properties of the underlying entities).

d(nodeA,nodeB) = |nodeA.outcome−nodeB.outcome| (1)

The hierarchical process begins as follows. First, each state in a
layer is assigned to its own cluster for which it is the only member.
Then, distances between all pairs of clusters are computed. The dis-
tance between two clusters, defined in Equation 2, is determined by
the average of the distances between all nodes in the first cluster to all
nodes in the second cluster.

d(clusterX ,clusterY ) =
∑m∈clusterX &n∈clusterY

d(m,n)
size(clusterX )∗ size(clusterY )

(2)

Once the distances have been computed for all pairs of clusters in a
given layer, clusters are merged in a greedy fashion. The most similar
pair of clusters is merged, and the cluster distances are updated to
reflect the new clustering. The greedy process repeats until either (1)
only one cluster remains, or (2) the most similar pair of remaining
clusters has a distance above the threshold specified by the user.

After the simplification process completes, clusters containing mul-
tiple states are rendered as a single node filled with gray in the visu-
alization. To preserve state transition information, the edges are not
merged even though their origin nodes or destination nodes may have
been simplified (Fig. 9). Nodes that are the alone in their cluster are
rendered using the normal Outflow visual encoding.

The simplification method can group similar states into clusters and
therefore reduce the number of nodes and visual complexity. However,
there is a limitation when the nodes cannot be clearly separated into
distinct groups; the final clusters may not be semantically meaningful
and may result in a less informative graph.

4.6 Factors
As described so far, Outflow provides an interactive visualization of
event pathways and their associated outcomes. However, it does not
yet incorporate external factors that can often influence how the events
progress. For example, while goals determine the pathways in our soc-
cer use case, yellow and red cards can have a major impact on how a
game unfolds. Similarly, CHF patients’ symptoms may be strongly in-
fluenced by the medications they are prescribed. In cases where they
can be controlled, factors can be important clues to analysts in under-
standing how they can influence patients’ progress.

Given the importance of factor analysis, we extend the basic Out-
flow data model to associate a set of timestamped factors ( fi, ti) with
each entity. Because of the timestamps, each occurrence of a factor

can be placed within the sequence of events associated with the corre-
sponding entity. The Outflow graph for a set of entities is constructed
as before using only the entities’ events. For each node and edge in
the graph, we then compute additional statistics to identify correlated
factors and suggest them to users via the user interface.

For our prototype, we have derived two metrics to detect factors
that occur unusually often (or rarely) before a given state or transition.
These metrics could be easily replaced with more sophisticated met-
rics that are more suitable for specific scenarios. In fact, we envision
having a collection of metrics that users could choose from to measure
various types of associations.

Our baseline metrics are inspired by the term frequency-inverse
document frequency (t f?id f ) measure [24] used widely in informa-
tion retrieval: presence correlation and absence correlation.

1. Presence correlation detects factors that are unusually frequent
for a given state or transition. For states, if a factor fi often occurs
before reaching state S j while fi rarely occurs elsewhere in the
dataset, then fi will be given a high presence correlation value
for the corresponding state. We measure this correlation using a
presence correlation (Cp) score, which we define as follows.

Rp =
number of entities with fi before S j

number of entities reaching S j
(3)

R−1
sp = log

(
number of states

1+number of states preceded by fi

)
(4)

Cp = Rp ·R−1
sp

A similar calculation is made for transitions by substituting S j
with Tm→n in Equation 3 and replacing number of states with
number of transitions in Equation 4. For R−1

sp , we only count
states (or transitions) for the current layer or earlier.

2. Absence correlation detects factors that are unusually rare for a
given state or transition. For states, if a factor fi rarely occurs
before reaching state S j while fi occurs commonly elsewhere in
the dataset, then fi will be given a high absence correlation value
for the corresponding state. This correlation is formulated as the
absence correlation (Ca) score defined below.

Ra =
number of entities without fi before S j

number of entities reaching S j
(5)
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Fig. 9. Using the same dataset as illustrated in Fig. 1, a user has adjusted the simplification slider to group states with similar outcomes. Clustered
states are represented with gray nodes. This simplified view shows that as more events occur (i.e., as more goals are scored), the paths diverge
into two distinct sets of clustered states. The simplified states more clearly separate winning scorelines from losing scorelines. As more goals are
scored, the probable outcomes of the games become more obvious.

R−1
sa = log

(
number of states

1+number of states not preceded by fi

)
(6)

Ca = Ra ·R−1
sa

A similar calculation is made for transitions by substituting S j
with Tm→n in Equation 5 and replacing number of states with
number of transitions in Equation 6. For R−1

sa , we only count
states (or transitions) for the current layer or earlier.

A new sidebar panel is added to the Outflow user interface to dis-
play these correlation scores. When users hover any time edge, the
panel is updated to display the most highly correlated present and ab-
sent factors for the corresponding transition. The panel can be seen on
the right side of Fig. 10. Factors are listed alphabetically and displayed
with a histogram to convey the strength of the correlation.

5 USER STUDY

We conducted a user study to evaluate Outflow’s ability to support a
variety of event sequence analysis tasks. We first describe the study’s
design which asked users to answer questions about Man U.’s 2010-
2011 soccer season using a visualization of the taste described in Sec-
tion 2.2. We then report the study’s results and discuss its findings.

5.1 Design
We asked 12 users (eight males and four females) to participate in
our study. All users were adult professionals who are comfortable
with computers. None of the users would consider themselves “soccer
experts”, but all have a basic understanding of the game. None of the
users had any prior experience using Outflow.

5.1.1 Procedure
Each user participated in a single 60-minute session during which they
were observed by a study moderator. Each session started with a brief
orientation in which the moderator explained Outflow’s design and

interactions. Participants were then allowed to experiment with the
visualization to gain some experience working with the system.

After roughly 15 minutes, the formal section of the study began.
Participants were asked to perform a list of tasks. While the tasks
were performed, the moderator recorded both accuracy and time to
completion for each task. Users were then asked to freely explore
the data and describe any interesting findings. After that, users were
given a written questionnaire to gather subjective feedback. Finally,
we debriefed the participants to learn about their experience and any
comments or suggestions they might have.

5.1.2 Tasks and Questionnaire
Each user was given a list of 16 tasks to perform. The tasks were
designed to evaluate people’s ability to understand proportion and car-
dinality of states and transitions, transition time, outcome of states and
transitions, and factors associated with transitions.

The first nine tasks were designed to measure the participant’s abil-
ity to interpret Outflow’s visual representation. These tasks were fur-
ther divided into two sets: practice tasks and test tasks. The first four
tasks, unbeknownst to the participants, were used only to ensure that
participants fully explored Outflow’s visual design. Timing/accuracy
data for these tasks was not included in our analysis. The five test tasks
(T1–T5) asked questions similar to the preceding practice tasks, but on
different aspects of the dataset.

The next seven tasks were designed to measure performance when
using Outflow’s interactive capabilities. Once again, these tasks were
split into two groups: practice tasks and test tasks. The first three
were designed to give participants practice using Outflow’s interactive
features and results were not included in our analysis. The four re-
maining tasks (T6–T9) asked similar questions about other aspects of
the dataset. The test tasks used in our study are as follows:

T1. “Can you find the state where Man U. conceded the first goal?”
Objective: Traverse graph using labels.

T2. “What happened most rarely after Man U. conceded the first
goal?” Objective: Interpret proportion from height of time edge.
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Fig. 10. Outflow highlights factors that are strongly correlated with specific event pathways. In this screenshot, a physician has focused on a group
of patients transitioning from the current state due to the onset of the “NYHA” symptom. This transition seems to be deadly, as seen from the
color-coding in red. The right sidebar displays medications (factors) with high correlations to this transition. The factor with the highest correlation
in this example is prescribing antiarrhythmic agents. This correlation, which may or may not be causal, can help clinicians generate hypotheses
about how best to treat a patient.

T3. “Was it faster to concede a goal or to score a goal from the state
in T1?” Objective: Interpret time from time edge width.

T4. “Was it more likely for Man U. to win or lose after the state in
T1?” Objective: Interpret state outcome.

T5. “What is the most common score after two goals are scored (2-0,
1-1 or 0-2)?” Objective: Traverse graph and interpret proportion
from state node height.

T6. “Can you find the state where Man U. led 2-1?” Objective: Tra-
verse graph using labels.

T7. “Which transition from the state in T6 led to the lowest percentage
of winning? How many percent?” Objective: Use tooltip.

T8. “Which factor(s) are highly correlated with the transition in T6?”
Objective: Understand factors.

T9. “For games that reached 2-2, which situation resulted in better
outcomes? (a) Scoring to move from down 1-2 into a 2-2 tie or
(b) conceding to move from a 2-1 lead to a 2-2 tie?” Objective:
Use tooltip. The actual data shows a 0.73 outcome for (a) and a
0.67 outcome for (b). While the similar outcome values make the
difference in color-coding hard to see, the tooltip provides access
to the numerical outcome statistics.

At the end of their study session, participants completed a question-
naire. It contained eight questions (Q1–Q8) to which users responded
on a 7-point Likert scale (1=very easy, 7=very hard). The question-
naire also included free response questions to gather more subjective
feedback. The eight Likert-scale questions included the following:

Q1. Is it easy or hard to learn how to use?

Q2. Is it easy or hard to interpret proportion of states?

Q3. Is it easy or hard to interpret proportion of transitions?

Q4. Is it easy or hard to interpret transition time?

Q5. Is it easy or hard to interpret outcome of states?
Q6. Is it easy or hard to interpret outcome of transitions?
Q7. Is it easy or hard to understand factors correlated with transitions?
Q8. Is it easy or hard to find a particular state in the graph?

5.2 Results
5.2.1 Accuracy
Overall, participants were able to complete the tasks accurately with
only three mistakes observed out of 108 total tasks (97.2% accuracy).

Two users erred on T4. These participants were able to identify the
node that was the focus of the question. However, neither responded
based on the color of the identified node. One user looked at all of
the future paths and mentally aggregated/averaged the values (incor-
rectly) to guess at the eventual outcome. This approach is subject to
bias because long paths cover more pixels even if their outcome is not
representative. When told of their mistake, the user said that looking at
the color of the node “would have been trivial. I just forgot.” The sec-
ond user who answered T4 incorrectly responded based on the color
of the largest outbound path. While that path corresponds to the most
often occurring next event, it does not by itself represent the overall
average outcome for the identified node. We hypothesize that both
errors were due in large part to the users’ lack of experience.

The only other error occurred on T9. However, during the ques-
tionnaire portion of the study session, it was determined that the user
misunderstood the task. He actually used Outflow correctly to answer
what he thought the question was asking.

5.2.2 Speed
Participants were able to finish the tasks rapidly with average comple-
tion times ranging between 5.33 to 64.22 seconds.2 The wide range

2Task completion times were as follows: (T1) Mean=5.33 ± SD=4.18 s;
(T2) 8.79 ± 7.09 s; (T3) 8.16 ± 7.64 s; (T4) 26.26 ± 14.39 s; (T5) 49.53 ±
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Fig. 11. Questionnaire results for each of the eight questions (Q1–Q8)
answered on a 7-point scale by our study participants.

in timings reflects in part variations in task complexity. However, the
standard deviations between timings for individual tasks were fairly
large (up to 30.47 s). In general, some users quickly mapped tasks
to a feature of the visualization while others spent more time think-
ing about what exactly the question was asking before settling on an
answer. Overall, the times are quite fast and we believe that allowing
novice users to precisely answer a complex task like T9 in as little as
one minute highlights Outflow’s utility.

5.2.3 Unrestricted Exploration
After completing the study tasks, users were given time to freely ex-
plore the visualization. Participants were able to quickly identify
several interesting aspects of the dataset. For example, many users
quickly found the highest scoring game which had a total of eight
goals. Participants were also drawn to states that had multiple “ar-
riving” edges and compared outcomes for the alternative paths. This
is similar to what they were asked to do in T9. One user discovered a
general trend that Man U. rarely received yellow cards when they lost.
This could be interpreted as a sign of lack of intensity in those games.

Users also enjoyed “the ability to investigate the progression of a
large number of games on one screen.” Users observed a number of
strong global trends, including: (1) Man U. wins a large majority of
their games, (2) Man U. wins most high scoring games, (3) Man U.
often comes back after falling behind, and (4) Man U. rarely loses a
game when ahead.

5.2.4 Questionnaire and Debriefing
Results from the questionnaire are shown in Fig. 11. A pairwise t-test
between all questions shows no significant difference between the rat-
ings of each question. Average ratings from all questions are between
1.50–2.33, suggesting that the participants generally found Outflow
easy to learn and easy to use.3

However, not all participants responded in the same way. As shown
in Fig. 11, there were a small number of higher ratings for questions
Q5-Q7 that indicate some frustration. In fact, all of the high scores
(> 4) came from a single participant who had difficulty understanding
the difference between the outcome of a state and the outcome of a
transition. He repeatedly asked for clarification and commented in
our questionnaire that tasks on these topics required “some effort to
parse the wording.” The moderator explained that while a state (e.g.,
a tied score of 1-1) has one overage outcome, there can be multiple
transitions to that state (e.g., 1-0 → concede → 1-1 vs. 0-1 → score
→ 1-1). The average outcomes for these transitions can be different
(e.g., 1-0 → concede → 1-1 ≈ 67% win vs. 0-1 → score → 1-1

30.47 s; (T6) 10.19± 3.01 s; (T7) 16.98 ± 10.81 s; (T8) 7.98 ± 4.01 s; (T9)
64.22±26.92 s

3Question ratings were as follows: (Q1) Mean=2.33± SD=0.78; (Q2)
1.58 ± 0.67; (Q3) 1.5 ± 0.67; (Q4) 1.58 ± 0.90; (Q5) 2.08 ± 1.56; (Q6)
2.17±1.53; (Q7) 2.25±1.71; and (Q8) 2±0.953

≈ 73% win). The user understood for a moment, but then quickly
became confused again. This led to his high responses and slower task
completion times.

Based on free response questions and interviews with the modera-
tor, participants felt overall that Outflow was “pretty”, “looks cool”,
and that the colors were “very meaningful”. They said that it provides
a “good high level view” that encodes a lot of information into a single
“simple to follow” visualization. In addition, users felt that the ability
to see outcome associated with alternative paths out of (or into) a given
state, and not just the state itself, is a powerful feature. “I like the dif-
ference between states and transitions [which allowed me] to compare
two paths to the same state and to understand differences.” Another
participant commented that “highlighting of paths was very helpful.”

When asked about learning to use Outflow, some participants ex-
pressed that the tool is unique, and therefore required some training to
get used to it. However, those participants also felt strongly that by the
end of the study they were proficient in using the tool. One remarked
that they would have done much better on the study tasks “with a few
more minutes of training at the start” suggesting a short learning curve.

Some limitations of the current design were also identified during
the study. One participant pointed out that users tend to view width as
time, but that the widest sequences don’t necessarily take the longest
(in fact, soccer games all take roughly the same amount of time). This
is indeed a limitation of the technique. Outflow handles graphs with
multiple incoming edges to a node. Because these different paths to
a node can have different durations, time can not be represented hori-
zontally using an absolute time axis. While making comparisons be-
tween alternative paths easier, this design choice can make temporal
comparisons across multiple steps somewhat harder.

Participants also suggested ideas for new features including (1) the
ability to pin multiple states at once, and (2) moving the display of cor-
related factors into the main visualization space (instead of the sepa-
rate sidebar used in the current design). We agree, and we are planning
to explore design alternatives for these features in future work.

6 CONCLUSIONS AND FUTURE WORK

This paper presented Outflow, a visualization that enables interactive
analysis of event sequence collections. Outflow aggregates multiple
event sequences and displays aggregate event pathway information in-
cluding timing and cardinality. It uses color-coding to depict the out-
comes associated with each pathway. Outflow also allows users to
explore how external factors correlate with specific states and transi-
tions. Two simple metrics for factor recommendation were presented.
We provided a detailed description of the visualization’s design includ-
ing a multi-step layout process designed to reduce visual complexity.
A portion of this process—the combination of Sugiyama’s algorithm
to reduce edge crossings and force-directed layout to straighten un-
necessarily curvy edges—is also applicable to a more general class of
DAG layout problems. Results from a user study with twelve partici-
pants were provided which demonstrated that users were able to learn
how to use Outflow easily within fifteen minutes of training, and were
able to accurately and quickly perform a broad range of analysis tasks.

While the initial results from our study are promising, there are
many possible topics to explore in future work. This includes the in-
tegration of Outflow with forecasting/prediction algorithms, the use
of additional layout techniques to reduce visual clutter, simplifying
the graph by aggregating similar paths, more advanced factor analysis
and expanded interaction capabilities. Furthermore, we understand the
limitations of the user study in this paper, which aims to test the us-
ability and learnability of Outflow. Additional evaluation studies, such
as deeper evaluations with domain experts and formal comparisons to
alternatives are needed.
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