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Fig. 1. FacetAtlas generates a multifaceted disease visualization on the query keyword “diabetes”. The two disease clusters cor-
respond to type-1 and type-2 diabetes, respectively. Colored links represent connections on different facets. In this figure, type-1
diabetes has similar complications as type-2 diabetes (the red links). Diseases in the type-2 cluster share similar symptoms (the
green links within that cluster).

Abstract—Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific
disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents
may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of
individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal
the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted
visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical
tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node
cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual
patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that
targets patient education in the health care domain.Our evaluation shows the benefits of this work, especially in support of complex
multifaceted data analysis.

Index Terms—Multi-facet visualization, Text visualization, Multi-relational Graph, Search UI

1 INTRODUCTION

As the Internet continues to experience explosive growth, an ever in-
creasing amount of information is becoming available through collec-
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tions of rich text documents. Ranging from digital libraries to online
medical references, these collections contain a wealth of multifaceted
interconnected data. To navigate through this rich data, most people
rely on search technologies to find relevant information. Search tools
typically return a ranked list of documents whose content is highly
related to a set of user-supplied keywords. This model has proven re-
markably powerful for information retrieval tasks, such as locating the
address of a restaurant. However, ranked lists are insufficient for more
complex data exploration and analytical tasks where users try to un-
derstand an overall document corpus or relationships between complex
concepts that span across multiple documents. Despite recent work on
more advanced interfaces [18, 23, 27], the effective organization and
presentation of search retrieval results is still largely an open problem.

This problem becomes even more challenging when considering the
multifaceted nature of many documents. For instance, consider an
online library of health-related articles such as Google Health. Each
article in the library describes a specific disease and contains informa-
tion about a number of different facets: symptom, treatment, cause,
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diagnosis, prognosis, and prevention. A search engine allows users to
find a page describing a specific disease, and links allow users to nav-
igate to a small set of predefined related pages. However, answering
some basic self-care questions remains very difficult. For example:
What are the general classes of diseases that can lead to the symptoms
I’m experiencing? Which of those diseases have a similar prognosis?
How do those diseases relate to each other in terms of treatment alter-
natives?

These questions require an understanding of complex correlations
across documents and across multiple facets of the contained informa-
tion. To answer these questions, users need to examine both high-level
overviews and fine-grained local-level relationships. For instance, a
user in the scenario above would need to both explore clusters of re-
lated diseases and uncover pairwise relationships based on specific
facets of information such as prognosis and treatment.

Information visualization technologies, when used in conjunction
with data mining and text analysis tools, can be of great value for
these sorts of tasks. For this reason, several visualizations have been
designed for either high-level corpora summarizations (e.g., [13]) or
low-level structure analysis (e.g., [27, 30]). See Section 2 for a more
comprehensive survey of related techniques.

Although many existing techniques provide valuable insight into
the visualized data, none of them offers a complete solution with the
following key features: (1) interactive visualization of local data rela-
tionships within the context of global document patterns, (2) dynamic
context control so that users can pivot between different facets of in-
formation, and (3) an integrated approach to multifaceted search and
visualization.

To bridge this gap, we propose FacetAtlas, a new interactive visu-
alization technique that enables users to navigate and analyze large
multifaceted text corpora with complex cross-document relationships.
Specifically, FacetAtlas provides the following key features:

• Visualization of both global and local patterns. FacetAtlas
employs a multifaceted graph visualization to visualize local re-
lations and a density map to portray a global context.

• Integrating unstructured search with visualization. FacetAt-
las automatically converts search results from a one-dimensional
list into a visual graph-based representation that is rendered
within a global context. This enables an interactive exploration
of multifaceted relationships.

• Dynamic facet-based context switching. In addition to basic
interactions such as zooming, filtering and highlighting, FacetAt-
las supports dynamic context switching. This allows a user to
pivot the primary visualization layout arrangement across differ-
ent facets while maintaining his/her analytic focus.

In this paper, we describe both the design and implementation of
FacetAtlas. In addition, we demonstrate the power of our approach
through a case study of FacetAtlas applied to a healthcare application1.
Initial user feedback confirms the effectiveness and general applicabil-
ity of FacetAtlas for searching and exploring rich text corpora.

The rest of paper is organized as follows: Section 2 reviews several
areas of related work; Section 3 introduces the data model used in
our work; Section 4 presents the visualization design of FacetAtlas
and describes how users interact with the system; Section 5 includes a
detailed description of our implementation; Section 6 presents a case
study in the healthcare domain; Section 7 evaluates FacetAtlas through
a formal user study; finally, the paper concludes in Section 8 with a
review and discussion of future work.

2 RELATED WORK

In this section, we first review text visualizations that have focused on
global patterns. Then we discuss work on visualizing local relational
patterns in text. Finally, we survey related work on using visualization
as a search interface.

1The screen capture video is available at: http://www.cse.ust.hk/∼nancao/

movie/facetatlas.mov

2.1 Visualizing Global Patterns in Text Corpora
Content level: Many conventional text visualizations are designed to
reveal global patterns in content from single or multiple documents.
Perhaps most common is the tag cloud [12] which displays a set of
words in rows with font sizes that correspond to statistics such as term
frequency. More advanced tag clouds such as Wordle [29], and Word
Cloud [9] enhance the appearance through more sophisticated lay-
outs. In other work, document cards [24] present the content of a doc-
ument collection using summary cards that include highlighted figures
and content topics. Topic Islands [20] uses wavelets to summarize the
thematic characteristics of a single document. ThemeRiver [13] visu-
alizes topic evolution using a temporal plot showing the ebb and flow
of topic themes over time. FacetAtlas goes beyond global patterns by
displaying both global and local patterns.

Document level: In contrast to content-level visualization meth-
ods, document-level tools use projection-based techniques to visualize
relationships between documents in a collection. Many of these visu-
alizations [1, 7, 31] map a set of documents to a 2D display accord-
ing to document similarity. Other projections, such as probabilistic
latent semantic model [17], can reveal topic clusters. However, be-
cause of information lost when projecting from a high dimensional
space to 2D coordinates, it is often hard for users to understand the
semantic meaning of the resulting clusters. In FacetAtlas, we follow a
projection-based approach to render document-level relationships. We
combat the information lost due to dimensionality reduction by pro-
viding a novel multifaceted graph-based display that is integrated with
an optimized density map.

2.2 Visualizing Local Relational Patterns
Visualizing local relational patterns has received significant attention
in recent years, specifically in the context of text and graph visualiza-
tion.

Text Visualization: Text visualizations such as WordTree [30]
and PhraseNet [28] focus on relational word patterns in text. In par-
ticular, WordTree considers the prefix relation between words at the
syntax level. PhraseNet allows users to define relationships. How-
ever, these systems do not focus on multifaceted relations as we do
with FacetAtlas. In other work, Collins et al. [8] introduce parallel
tag clouds (PTCs) to visualize text along multiple facets arranged as
columns of words. Links across columns represent co-occurrence re-
lationships. In contrast to the word-level focus of PTCs, FacetAtlas
can visualize more complex latent relationships.

Graph Visualization Various network visualizations [15] have
been designed to analyze relational patterns. However, many of these,
such as Vizster [14], consider only one type of relationship. In order
to visualize multiple types of relationships, Shen et al. [21] introduce
OntoVis which uses nodes and links to represent various concepts and
relations for large and heterogeneous social networks. In particular,
OntoVis connects each entity in the focused concepts with its related
entities from both focused and unfocused concepts. Compared to On-
toVis, our FacetAtlas adopts a completely different visual design to
present multifaceted relations which can easily convey both global and
local patterns in one visual metaphor. In addition, it also provides sev-
eral novel visual interaction to facilitate users to identify outliers and
co-occurrences.

In other work, SocialAction [22] supports relational pattern detec-
tion for social networks through smart filtering of important nodes,
clusters and outliers. Similarly, FacetAtlas provides users with rich
interaction tools that allow them to further interpret and examine mul-
tifaced interconnected data from multiple perspectives. In addition
FacetAtlas includes automated pattern detection to support the visual-
ization of clusters, co-occurrences and outliers.

2.3 Visual Search Interfaces
Traditional search interfaces for text corpora present a ranked list of
search results. Recognizing the limitations of this approach, some re-
searchers have explored visualization-based search interfaces. For ex-
ample, van Ham et al. [27] present a visual search tool to allow users

1173CAO ET AL: FACETATLAS: MULTIFACETED VISUALIZATION FOR RICH TEXT CORPORA



to navigate through a subgraph in a huge document network. Smith
et al. [23] introduce FacetMap and FacetLens [18] which provide a
visualization-based interface for multifaceted document search. Com-
mercially, Grokker (http://www.grokker.com/) is notable for its use of
a circular Treemap visualization to dynamically generate topic clus-
ters on web search results. However, these systems do not consider
multifaceted relationships as is the focus of FacetAtlas.

3 DATA MODEL AND TRANSFORMATION

In this section, we introduce the multifaceted entity-relational data
model used by FacetAtlas. We first define the core data model con-
structs. We then discuss how a set of documents is transformed from
raw text to fit this model.

3.1 Multifaceted entity-relational data model
The FacetAtlas data model is a multifaceted representation that cap-
tures entities and their relationships. The model consists of the fol-
lowing abstract data :

• Entities are instances of a particular concept from the data. For
example, “Type-1-Diabetes” is a disease entity.

• Facets are classes of entities. For example, “disease” is a
facet which contains both the “Type-1-Diabetes” and “Type-2-
Diabetes” entities.

• Relations are connections between pairs of entities. There are
two types of relations. Internal relations are connections be-
tween entities or entity groups within the same facet. For ex-
ample, “Type-1- Diabetes” has an internal relation to “Type-2-
Diabetes” because both are diseases. External relations are con-
nections between entities of different facets. For example, the
disease entity “Type-1-Diabetes” has several external relations to
symptom entities such as“increased thirst” and “blurred vision.”

• Clusters are groups of similar entities within a single facet. For
example, a group of diseases related to “Type-1-Diabetes” forms
a cluster on the disease facet.

• Life Each entity and relations are assigned

A simple example of the data model is illustrated in Fig. 2(a). The
figure shows three facets—Disease, Symptom and Treatment—each
represented as a separate layer. Nodes on each layer represent enti-
ties within the corresponding facet. Edges within a layer are internal
relations, while edges across layers are external relations.

3.2 Transformation
Before FacetAtlas can be used to visualize a corpus of text documents,
the raw text material needs to be transformed to fit into the multi-
faceted entity relational data model described above. The transforma-
tion process consists of the following key steps: multifaceted entity
extraction, similarity measurement, and index building.

First, we extract the multifaceted entities by either applying a stan-
dard name entity recognition (NER)2 based on some domain-specific
model, such as the medical model, or rely on topic modeling (e.g.,
ContexTour [19]). The former approach, NER, can easily extract en-
tities in facets like organization, location and time. The latter one an-
alyzes topic threads from documents that are used as facets with their
keywords being used as entities in FacetAtlas.

Second, we construct a similarity graph for the extracted entities.
In this step, we use either standard information retrieval measures
(e.g., cosine similarity) or topic-level similarity through topic mod-
eling. This step may be skipped when topic information is available
from the text corpus such as in the Google Health case.

Finally we use Lucene3 to build a separate search indices for each
facet. FacetAtlas leverages these indices for online queries. As a re-
sult, user-supplied query keywords can be used at runtime to access

2Stanford name entity recognizer, http://nlp.stanford.edu/software/CRF-

NER.shtml
3http://lucene.apache.org/java/docs/

targeted portions of the data model. When a query is issued, FacetAt-
las retrieves and visualizes the most relevant entities and their corre-
sponding relations.

4 VISUALIZATION DESIGN OF FACETATLAS

Based on the multifaceted entity-relational data model we design an
interactive visualization for the exploration and analysis of multi-
faceted interconnected data. In this section, we describe in detail how
FacetAtlas visualizes such data.

4.1 Overall Visual Design
To encode both global cluster information as well as detailed pairwise
relationships in multifaceted interconnected data, we combine a den-
sity map with a multifaceted graph. As show in Fig. 1, the cluster
context is displayed as a density map in the background layer. In the
multifaceted graph, entities are represented by circles, color-coded by
their facets.

In the following sections, we introduce three key aspects of the
FacetAtlas design including: (1) the visual encoding adopted to rep-
resent elements of the FacetAtlas data model, (2) the visual patterns
employed to facilitate data exploration; and (3) the user interactions
that allow users to examine data from multiple perspectives.

4.2 Visual Encoding
The facet, entity, and relation are the abstract elements in our data
model. In this section, we describe in detail how FacetAtlas employs
visual elements (e.g., point, link, area, and color [4, 6]) to encode
these abstract elements.

Facet Encoding. Facets are encoded by different colors. Cate-
gorical colors are selected for facets based on the CIELAB model so
that facets can be easily differentiated. The facet colors are consis-
tently used for both points and links, with the colors remaining con-
stant across views as users navigate the visualization. In addition, the
visualization differentiates between a single primary facet and other
secondary facets by sizes and colors. The interactive facet legend dis-
plays the primary facet as the leftmost circle and uses entities from this
facet to build the base graph of the visualization.

Entity Encoding. An entity is represented as circles colored by
its facet. For primary entities (entities that belong to the primary
facet), circle size is used to represent an entity’s degree-of-interest
(DOI) [25]. More specifically, DOI determines to what extent a user
will be interested in a certain entity. In our search-oriented application
area, users’ interests become clear when they issue a query. Therefore,
DOI is defined as the relevancy of an entity to a user’s query.

Secondary entities (entities that belong to one of the secondary
facets) are rendered together with primary entities as compound nodes.
Each compound node contains a single large circle (representing a pri-
mary entity), surrounded by small nodes (representing secondary en-
tities invisibly connected by external relations). We call these nodes
entity node and facet nodes, respectively. For example, in Fig. 2(b),
the disease “Diabetes-Type-1” has a symptom facet node drawn in red
which corresponds to a set of symptom entities such as “increased-
thirst” and “blurred-vision” that have external relations to the disease.

This design also collapses multiple secondary entities into a sin-
gle facet node to reduce visual clutter. As a result, the visualization
becomes more consistent since only primary entities are displayed in
detail. We argue this simplification is one of the key design elements
that enables the successful display of both global and local patterns in
a clear fashion.

Relation Encoding Two different visual encodings are used to
encode relations within FacetAtlas, one for each of the two relation
types: internal relations and external relations.

Internal relations are encoded using links between corresponding
facet nodes of two different compound nodes. Once again, color cod-
ing is used to illustrate which facet the link represents. For exam-
ple, Fig. 2(b) shows a red link representing an internal relation be-
tween the symptom nodes of two different diseases. The thickness
of a link indicates how related two entities are along a specific facet.
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Fig. 2. (a) The FacetAtlas multifaceted entity-relational data model. Concepts in a complex text corpus are transformed into facets, entities and
relations. (b) The data model is visually encoded using a spatial arrangement of color-coded nodes and edges.

In Fig. 2(b), “Type-1-Diabetes” and “Type-2-Diabetes” share a lot
of common symptoms (shown in red) but fewer common treatments
(shown in green). Therefore, the red link is thicker than the green link.

Based on this encoding, the links between two compound nodes A
and B indicate the overall similarity of their primary nodes in multiple
facets. More specifically, the thickness of a single link in Facet F
that connects two facet nodes respectively in A and B is encoded to
the similarity of A’s primary entity and B’s primary entity in F. This
similarity is calculated by the overlap ratio of the secondary entities
inside two connected facet nodes. For example, A’s primary entity is
”diabetes” and B’s primary entity is ”cancer”. If there is an internal
link on the symptoms facet that connects A and B, it indicates that
”diabetes” and ”cancer” have some similar symptoms. The number
of the symptoms in common over all their symptoms is the overlap
ratio that indicates the similarity of these two diseases on the symptom
facet. It is encoded by the thickness of the link.

External relations are encoded implicitly through the construction
of compound nodes. When a primary entity is displayed through a
compound node, only facet nodes with external relations are included.
Moreover, the size of a facet node is proportional to the number of ex-
ternal relations on that facet. For example, Fig. 2(b) shows three facet
nodes for “Diabetes Type-1.” Among the three, the red symptom node
is the largest, signifying the most external relations between “Diabetes
type-1” and different symptoms.

4.3 Visual Patterns
FacetAtlas provides several visual patterns to facilitate user explo-
ration.

Clusters Groups of similar entities are represented using an op-
timized density map. Our design is similar to [3, 10], but using a
completely different algorithm. Intuitively, a clustering process di-
vides entities into groups by their internal relations. For clarity, we
defer our detailed description of the algorithm behind this capability
until Section 5.2.1. Visually, we use areas with boundaries to encode
the calculated clusters. When visualizing large text corpora with too
many entities to display at once, only the entities with highest DOI
in each cluster will be shown on the screen. To provide navigation
queues regarding hidden entities, a cluster density metric is computed
and mapped to the color intensity of the bounded areas. This conveys
the overall distribution of entities within the clusters.

Co-occurrences Co-occurrence patterns occur when two or
more entities have very strong internal relations across several facets.
Such a set of nodes often implies a tight cluster on secondary facets.
For example, if a set of diseases share the same symptoms, treat-
ments and prognoses, the relations across these facets will form a co-
occurrence pattern. This pattern signifies that the set of diseases are
deeply related. Visually, we represent co-occurrence patterns across

multiple facets using parallel links between the associated entities as
shown in Fig. 6(a).

Outliers Outlier patterns represent entities with internal relations
that cross cluster boundaries. Visually, we represent outlier patterns
by highlighting links cross the cluster boundaries via opacity adjust-
ment as shown in Fig. 6(b). The algorithmic details of this process are
provided in Section 5.4.

4.4 Interaction
To support interactive exploration of the visualized data, FacetAtlas
provides several rich interactions.

Fig. 3. FacetAtlas applied to Google Health data. This figure shows
a disease diagram for the search term “HIV.” FacetAtlas contains four
main components: (1) an interactive facet legend, (2) a query box, (3) a
canvas for rendering multifaceted relational diagrams, and (4) a dynamic
query filter to control that amount of information being displayed.

Dynamic Query FacetAtlas allows users to provide a text query
through a multifaceted query box. This feature is illustrated in Fig. 3
where a user has searched for the term “HIV.” In response to a search,
the main visualization space shows a depiction of the facets, entities,
relations and clusters relevant to the query. In addition, users can use
the dynamic query filter slider (located at the bottom of Fig. 3) to filter
entities based on their DOIs.

During the dynamic query process, animated transitions as well as
a context-preserving layout algorithm [5] are applied to maintain a

1175CAO ET AL: FACETATLAS: MULTIFACETED VISUALIZATION FOR RICH TEXT CORPORA



user’s mental map. This approach balances layout stability against
overall readability to provide an optimized dynamic visualization ex-
perience with minimum changes and maximum aesthetics.

Semantic Zoom This feature allows users to select a particular
compound node to zoom in for more details about related entity nodes.
For example, when a user zooms in from the disease “Asymptomatic
HIV Infection” shown in Fig. 3, they arrive at the new view shown in
Fig. 7(a). Similar to dynamic queries, we also use animated transitions
and context-preserving layouts to maintain a user’s mental map during
semantic zoom.

Context Switching Users perform a context switch to change the
“primary facet” around a focal point. As an extension of semantic
zoom, context switching allows users to first focus on a specific com-
pound node and then switch view point to other facet. For example, as
depicted in Fig. 7, when users switch context from Disease to Symp-
tom view on “HIV Infection”, all its related symptoms will be shown
as entity nodes in the resulting visualization. Diseases, meanwhile,
collapse into facet nodes surrounding the symptom nodes.

Highlight Two types of highlighting interactions are supported by
FacetAtlas: link highlights and pattern highlights. Link highlights pro-
vide contextual information for an entity. More specifically, when a
mouse-over occurs over a compound node x, the tooltip with a sum-
mary of x is shown. In addition, all other entity nodes that are directly
connected to x are also highlighted.

Pattern highlights are designed to help filter out trivial connec-
tions and enhance more meaningful patterns such as outliers and co-
occurrences. Users can select radio button on the top right of the user
interface to control the pattern highlighting feature.

Other Interactions In addition to the interactions described
above, several standard interactions are also provided:

Power Buttons. These buttons allow users to turn on/off certain
facets. In Fig. 3, the legend bar on top of the main view shows color-
coded facet buttons. The leftmost and largest button shows the primary
facet, followed by smaller secondary facet buttons. The secondary
facet buttons can be clicked to turn on/off the corresponding facet and
its relations.

Links To Documents. At any given time, users can connect back
to the original documents by double clicking on the nodes and links.
A popup window will be shown to illustrate the summarization of the
contents. FacetAtlas generates summarization in the following ways.

First, for the entities that have corresponding documents such as
the entities in disease facet, we return the list of such documents. If
only a single such document exists, we will directly connect to this
document.

Second, for the entities that occur in multiple documents such as the
symptoms entities, we use MEAD 4 to summarize all the related doc-
uments into a temporary text file which contains both the content sum-
marization of all the original documents and the hyperlinks pointing
to them. This is similar to the search results generated by traditional
search engines such as Google.

5 IMPLEMENTATION

This section describes the implementation of FacetAtlas based on the
design outlined in the previous section. It first presents an overview of
the FacetAtlas system architecture. It then provides detailed descrip-
tions for several key algorithms employed in support of the overall
design, including cluster layout, relation layout, and pattern enhance-
ment.

5.1 Architecture
The FacetAtlas architecture, shown in Fig. 4, consists of three pri-
mary components. First, the Data Transformation module transforms
a collection of text documents into the entity-relational data model
through text mining and entity extraction. The transformation process

4A public domain portable multi-document summarization system.

http://www.summarization.com/mead/

Fig. 4. The FacetAtlas architecture consists of three primary compo-
nents: (1) a data transformation module, (2) a visualization rendering
module, and (3) a user interaction module.

also constructs a set of indices over the data model for online query-
ing. A description of the data model and transformation process can
be found in Section 3.

The Visualization module maps the indexed entities and relations to
a multifaceted visual display according to the visual design outlined
in Section 4. It employs custom algorithms for laying out clusters of
nodes and relationships between those nodes. It also includes pattern
enhancement capabilities that improve the overall appearance and leg-
ibility of the visualization.

The User Interaction module enables rich interactions for users to
explore the data through operations such as filter, query and context
switch. These operations feed back into the data transformation and
visualization modules to enable user-driven data exploration.

5.2 Cluster Layout
Cluster layout is performed within the FacetAtlas visualization mod-
ule. Given a set of entities retrieved from an online query, we render
a density-map in the background to depict the overall distribution of
matching entities. Unfortunately, it is impossible for us to know the
real distribution of the data. Therefore we render density map by first
performing a Kernel Density Estimation. This process finds the opti-
mized smooth kernel density estimator to simulate entity distributions
over the entire dataset. After that, these samples are laid out within the
display space. Then, we put the optimized estimator over all samples
and compute joint distributions for intermediate locations within the
space. Finally, we trace the contours within the estimated values to
generate a density map with contour lines at multiple levels.

5.2.1 Kernel density estimation
Kernel density estimation (KDE) is a non-parametric way of estimat-
ing the probability density function of a random variable5. To approx-
imate and visually illustrate the global cluster context in multifaceted
interconnected data, we use all the underlying entities to model the
density distribution. To learn an optimal KDE, we extend the tradi-
tional KDE technique [26] to determine the density distribution around
entities. More specifically, to well represent all the interconnected
nodes by the sampled nodes, we assign each of the hidden nodes to
one of the closest sample nodes by performing a reverse-kNN search
based on graph topology. Mathematically, given a kernel function K(·)
and a positive number h as its bandwidth, the n-sample kernel density
estimator on the k-th facet is defined as:

f k
n (v) =

1

n

n

∑
i=1,i �=v

mi

h
K(

div

h
) (1)

where v ∈V is an entity in the raw data; div is the length of the shortest
path between the entity v and the sample entity i on facet k; and mi
is the kernel mass of the i-th sample. The bandwidth h controls the
amount of smoothing. When h is small, fn(x) gives a set of spikes.
When h is large, fn(x) becomes a uniform distribution. To find the
best estimator that is closest to the real distribution, the following loss
function between the unknown real distribution f(x) and its n-sample
estimator fn(x) is minimized by choosing an optimal bandwidth h∗:

5http://en.wikipedia.org/wiki/Kernel density estimation
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L(h) =
∫

( f (v)− fn(v))2dv

=
∫

fn(v)2dv−2

∫
fn(v) f (v)dv+

∫
f (v)2dv

(2)

Considering that
∫

f (x)2dx is not dependent on h, we can reformu-
late Eq. 2 as

J(h) =
∫

fn(v)2dv−2

∫
fn(v) f (v)dv (3)

Empirically, this can be trained using leave-one-out cross-
validation [26] over the training samples. Thus we effectively put a
smooth mass over all data points through the best n-sample estimator.

5.2.2 Density map layout and estimation
We generate the density map based on the sample node locations
within the display space, and use the optimized density estimator to
simulate entity distribution of the entire data corpus.

A base layout is first computed by mapping samples to the display
space. To stabilize the layout of visible nodes during animated transi-
tions, we use a context preserving stress majorization algorithm [5].
In this algorithm, we balance between the readability and stability of
the density diagram by taking the dynamics of data exploration into
account. Furthermore, we preserve layout relationships between indi-
vidually connected components by adding virtual connections among
the most related nodes in different components respectively. The re-
latedness is computed using internal relations on the secondary facets.

After the base layout is obtained, the optimized density estimator is
applied over all the samples. Joint distributions are computed in real-
time according to the sample locations. Contour lines of the density
map are then generated by tracing the gradient of the joint densities
across the display space. To accelerate the density map generation, we
grid the screen into a low resolution density matrix. Finally we use the
estimated density values to determine the color transparency of areas
in the density map to complete this portion of the visualization.

5.3 Relation Layout
We implement two types of link layouts to represent both internal and
external relations between facets simultaneously. As described in Sec-
tion 4.2, we represent external relations with facet nodes by placing
them around a central entity node. This arrangement forms a single
compound node. Internal links are represented as edges that connect
two facet nodes from different compound nodes. To reduce line cross-
ings and facilitate relational pattern search, a custom layout algorithm
is used to arrange the visual presentation of these elements.

Our algorithm first reduces line crossings by adjusting the position
order of facet nodes. It repeatedly swaps adjacent pairs within each
compound node as long as thees swaps result in a lower number of
crossings. This process is repeated until it reaches a pass with no
swaps. Using the refined order, we then apply a global spring force
model across all compound nodes. The objective is twofold: (1) to
minimize the average edge length, and (2) to refine compound node
orientations to facilitate edge bundling. As demonstrated in various
systems [11, 16, 32], edge bundling can reduce visual clutter and im-
prove the clarity of displays. The spring force is applied to each inter-
nal link. The model is defined as (see Fig. 5(a)):

min∑
k

∑
i

ωk f k
i sin(θ k

i )(rk
i +Ri) (4)

where ωk is the importance of the k-th facet. i is the index of the entity

node. Ri and rk
i are radii of the i-th entity node and its k-th facet node,

respectively. θ k
i is the orientation of the edge with an endpoint of the

k-th facet node of the i-th entity node. The new objective balances the
force moment on each compound node. Thus, it avoids unnecessary
link-node overlapping as depicted in Fig. 5(b). This is achieved by
rotating the compound node to adjust link orientations.

(a) (b)

Fig. 5. The force model on compound nodes. (a) The force momentum
resolution of one single spring force in the model, (b) link-node overlap-
ping. The internal links overlap with entity node A in a bad layout of the
facet nodes.

Using the layout produced by the algorithm above, we further per-
form a graph partitioning process to divide the clusters before applying
hierarchical edge bundling [16] to bundle links through the center of
the each cluster containing their end points.

5.4 Pattern Enhancement
As outlined in Section 4.3, FacetAtlas is able to automatically detect
two detailed link patterns: outlier patterns and co-occurrence patterns.
In a complex text corpus, identifying these patterns is challenging. Fil-
tering alone does not help because such patterns can only be found
when all connections are shown. Therefore, FacetAtlas applies an au-
tomated algorithm to adjust link color opacities to enhance these pat-
terns. The result is illustrated in Fig. 6(a) and (b).

The adjustment of color opacities is based on two similarity mea-
surements: semantic similarity and layout closeness. Semantic simi-
larity simi j between any pair of entity nodes i and j is calculated by
considering all internal connections of these two nodes:

simi j =
M

∑
k=1

simk(i, j) (5)

where simk(i, j) computes the similarity between entity nodes i and
j on facet k; M is the number of facets. In our implementation, the
similarity is calculated by summing the weights of the corresponding
internal connections.

Layout closeness di j between two entity nodes i and j measures
how close the two nodes are in the layout. In our implementation, a
hierarchical clustering metric is applied. In this metric, we first cluster
the entity nodes in a hierarchy by considering their own similarities
or based on an expert ontology. Given the n-level cluster hierarchy,
we assign each primary entity i a cluster vector ci[1...n] where ci[k]
is a cluster ID number in the k-th level in the hierarchy. Then, di j is
calculated by:

di j = 1− < ci,c j >

‖ci‖‖c j‖ (6)

where < ci,c j > is the inner product between vector ci and c j; and ‖c‖
is the L2 norm of the vector c.

We enhance the co-occurrence pattern by using simi j to encode the
color opacities of the internal relation links and their related entities.
Thus the entities that have connections on multiple facets are automat-
ically highlighted as in Fig. 6(a).

Enhancing the outlier pattern as shown Fig. 6(b) requires a combi-
nation of both semantic similarity and layout closeness metrics. More
specifically, we use Eq. 7 to adjust the color opacity for all internal
relations between i and j.

Opacity(i, j) =
√

di j ∗ simi j (7)

The rationale behind this formulation is that we will highlight the links
that connect nodes topologically far away (di j is large) that are seman-
tically similar (simi j is large). In our implementation, both simi j and
di j are normalized to the range [0, 1].
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Fig. 6. Automatic Opacity Pattern Enhancement. This visualization de-
picts the symptoms related with ”Asymptomatic HIV Infection” shown in
Fig. 3. The right bottom view shows the visualization without pattern
enhancement. (a) Enhancement of co-occurrence patterns. This view
indicates strongly correlated symptoms using parallel links connecting
the correlated facets. (b) Enhancement of outlier patterns. In this case
”Fever” and ”Headache” are two symptoms in different clusters with a
strong connection through secondary facets.

The opacity calculated above is rendered by alpha-blending, i.e., a
link or node with high opacity is rendered with low transparency. In
this way it provides a soft-cut with the display context and visually
illustrates the patterns in a smooth way.

6 CASE STUDY

To demonstrate the capabilities and usefulness of FacetAtlas, we apply
it to a health care application. In this section, we first introduce the
application setup. Then we describe in detail two specific use cases
that revealed interesting patterns. Note that both cases were suggested
by the medical experts who used our system.

6.1 Setup
Our case study application is based on the online Google Health library
which contains over 1,500 online articles. Each article describes a sin-
gle disease in multiple sections such as disease overview, treatment,
symptoms, cause, diagnosis, prognosis, prevention and complications.
To prepare the data for FacetAtlas, we transformed these online ar-
ticles to fit into our multifaceted entity-relational data model. Each
document section is mapped to a facet in our model. For each section,
there are often several bulleted lists. Each of those bullets becomes an
entity in the corresponding facet. For those sections that do not contain
any bullets, name entity recognition with a medical text model is ap-
plied to extract medical entities. Furthermore, we leveraged the stan-
dard ICD-9 classification6 to group the disease entities into clusters.
With this transformation, we converted the articles into a multifaceted
entity-relational data model. The transformed dataset contains 8 facets
and around 25,000 entities with more than 50,000 internal links.

6.2 Study on HIV Infection
To help users study “HIV infections”, we choose “HIV” as the query
for further exploration. As shown in Fig. 3, FacetAtlas generates the
disease diagram initially as a density map without any links. Three
cluster patterns were clearly shown. Each of the three clusters repre-
sents a different stage of “HIV infection”. We turned on the symptom
and treatment facets by clicking the corresponding buttons at the top.
Interestingly, we found that all three clusters share similar symptoms
(as illustrated by the green symptom links that cross cluster bound-
aries) while each cluster has relatively distinct treatments (purple treat-
ment links are within clusters).

To learn more about the disease, we double-clicked on each of the
three center diseases: “HIV Infection”, “Asymptomatic HIV Infec-
tion” and “Early Symptomatic HIV Infection”. Their Google Health
articles were shown. Then we learned that the “Asymptomatic HIV
infection” is a very dangerous stage since there are no obvious HIV

6http://icd9cm.chrisendres.com/

(a)

(b)

Fig. 7. Case study on HIV infection. (a) Semantic zoom. When zooming
in on “Asymptomatic HIV Infection” from the initial view shown in Fig. 3,
more related diseases are shown (highlighted in the red circle). The
initial context is preserved and represented by the black circles. (b)
Context switch. After switching from a disease view to a symptom view
for “Asymptomatic HIV Infection”, two prominent symptom clusters are
shown. These symptoms share similar complications within each cluster
as indicated by the red links.

symptoms. When we performed a semantic zoom in to this disease,
we confirmed that it has strong symptom connections with some other
infections (see Fig. 7(a)). Furthermore, we switched to the symptom
view to explore all its related symptoms in detail. Two symptom clus-
ters were visible as shown in Fig. 7(b). After exploring the multi-
faceted relationships of those two clusters, we found that these symp-
tom clusters led to different complications as shown in Fig. 7(b). More
interestingly, when switching to the co-occurrence view in Fig. 6(a),
we found some symptoms always co-exist with each other. This is evi-
dent through the parallel lines that are used to highlight co-occurrence
patterns. Similarly, when switching to the outlier view, some cross-
cluster symptoms like “fever” and “headache” were highlighted. This
means that they commonly occurred in many other diseases but not in
“Asymptomatic HIV infection”.

6.3 Study on Diabetes
As indicated by our medical collaborators, diabetes is one of the lead-
ing chronic diseases in the United States. Following a similar anal-
ysis process as in the HIV case study, we also explored “Diabetes”
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(a)

(b)

Fig. 8. Case study on diabetes. (a) Cluster pattern of symptoms related
with Type-1-Diabetes. (b) Outlier patterns on symptoms.

using FacetAtlas. As shown in Fig. 1, two clusters are visible, corre-
sponding to “Type-1-Diabetes” and “Type-2-Diabetes”. Through the
multifaceted links, we easily learned that both type-1 and type-2 have
similar complications (red links) and symptoms (green links).

After switching to the symptom view of “Type-1-Diabetes” (illus-
trated in Fig. 8(a)) all of the disease’s related symptoms were auto-
matically grouped into three clusters according to their disease co-
occurrence. The cluster on the left had the most common symptoms
with “Type-1-Diabetes”. The cluster on the right had some less com-
mon but still relevant symptoms like “losing weight without trying”
and “nervousness”. We also found strong outlier patterns in this symp-
tom view as illustrated in Fig. 8(b). Some of these patterns were ex-
pected and others were more interesting. For example, we found that
for diabetes “hunger” is related to “increased appetite”; “loss of ap-
petite” related to “weight loss” and ”chills”. These visual patterns can
help explain how different symptoms are connected with each other
and why.

7 EVALUATION

In addition to the case studies above, our system was evaluated quan-
titatively through a formal user study and expert interviews.

7.1 Study Setup
To evaluate the effectiveness and efficiency of FacetAtlas in support of
multifaceted data analysis, we designed and conducted a comparison
study. Our study compared the usefulness and usability of FacetAtlas

for a health care application with a baseline system that we developed.
The baseline used an improved graph visualization for representing
multiple relations. We used this approach as our baseline for two major
reasons. First, there are no other visualizations beyond FacetAtlas that
are especially designed to visualize the multifaceted entity-relational
data. Second, the baseline system is implemented based on the Fac-
etAtlas framework which provides exactly the same information and
similar interactions as FacetAtlas to enable a fair comparison. The
baseline system used a force-based method to cluster related nodes to-
gether. However, it doesn’t have other visual cues, such as contour
map used in FacetAtlas for clusters.

To quantitatively and qualitatively evaluate the main design objec-
tives of FacetAtlas (i.e., soft clustering and multifaceted relations), we
designed the following tasks on the healthcare data. T1: identify the
major clusters for a test query; T2: identify the representative mem-
bers in the clusters for the query; T3: identify the facet with the most
within-cluster connections; T4: identify the facet with the most cross-
cluster connections; T5: identify the facet of the two most connected
members on the symptom facet; T6: identify the facet with the most
overall connections across entities. We use the test query “diabetes”
based on our experts’ recommendations in order to simulate a com-
mon self-care education scenario for chronic diabetic patients. The
overall scenario demonstrates a concrete use-case of a patient using
FacetAtlas to understand the underlying relations of different diabetic
diseases and complications. From the evaluation perspective, T1-2
evaluate the features on soft-clustering visualization (global patterns),
and T3-6 evaluate the features on multifaceted connections (local pat-
terns).

We recruited 20 participants for our study (8 researchers and 12
students majoring in computer science, psychology and mathemat-
ics). None had any prior medical or InfoVis background. Inspired
by the repeated-measures study [2], we divided the participants into
two groups of ten. The first group used our baseline tool for tasks T1,
T3, and T5 while the second group used the FacetAtlas for these same
tasks. The tool assignment was reversed for tasks T2, T4, and T6 with
group one using the FacetAtlas. At the beginning of each user session,
we gave a brief tutorial of both systems. The participants were then
asked to complete the six tasks.

We recorded two objective measures: task completion time (the
time spent on each task), and task success rate (percentage of the suc-
cessful tasks). We computed the mean and standard deviation of task
completion time and task success rate across all the users and ques-
tions. We also recorded subjective measures via user surveys: useful-
ness (how useful a system is for the specific task), usability (how easy
the system can be used to complete a specific task), and satisfaction
(the number of complaints and favorites on the system features).

7.2 Results and Analysis
The main findings are (1) FacetAtlas and the baseline system lead to
similar task success rates across all tasks while (2) FacetAtlas requires
significantly less time than the baseline to complete the tasks. The
mean (M) and standard deviation (SD) of correctness and time cost
are shown in Fig. 9.

When compared on task success rate, both FacetAtlas and the base-
line achieve similarly high accuracy levels. This is because both visu-
alization methods display the same underlying information.

The benefit of FacetAtlas becomes evident in the time required to
complete the tasks. The standard independent t-test shows that when
compared with the baseline system, FacetAtlas has a significant effi-
ciency improvement when visualizing the soft-clusters (t(18) = 2.26,
p = 0.0064 < .05, two tails), showing an overview of multiple con-
nections across clusters (t(18) = 2.26, p = 0.001 < .05, two tails), as
well as representing the details of multifaceted connections between
entities (t(18) = 2.26, p = 0.003 < .05, two tails). All of these aspects
are key design objectives of FacetAtlas.

The study results also show that FacetAtlas leads to a slight im-
provement in finding the most connective facet within a cluster, al-
though the difference is not statistically significant (t(18) = 2.26,
p = 0.34 > .05, two tails). We believe this is due to the use of a
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Fig. 9. The user study results of time cost and correctness.

more complex edge visualization when displaying multiple facets in
the FacetAtlas approach. Nevertheless, the results are still better than
the results obtained from the baseline, which suffers from edge cross-
ings that reduce comprehensibility. FacetAtlas also had no clear ad-
vantage over the baseline on task 5 (t(18) = 2.26, p = 0.31 > .05, two
tails). Though statistically insignificant, the baseline performed better
in terms of accuracy while the FacetAtlas resulted in faster perfor-
mance times. We believe that the accuracy advantage was likely due
to the use of straight lines for edges which were easier to read when
the graph was sparse. In summary, this user study quantitatively con-
firmed the effectiveness and efficiency of FacetAltas over the baseline
in solving several key multifaceted exploration tasks.

Fig. 10. Users’ feedback on FacetAtlas. (a) Summarization of users
feedback on FacetAtlas key features. (b) The evaluation of ease of use
and usefulness. The scores range from 1 (lowest) to 7 (highest).

In addition to the quantitative results presented above, we collected
qualitative user feedback on the key features of FacetAtlas (dynamic
query, search, context switch, multifaceted relations, soft-clustering

and the overall visualization) through a survey. In addition to asking
users for their most and least favorite features, we also asked users to
provide numeric rankings for each feature where 1 was the worst score
and 7 the best score. Users could also provide free-form feedback. The
subjective results are summarized in Fig. 10.

As depicted in Fig. 10(a), the density map based soft-cluster rep-
resentation is the users’ favorite feature whereas the dynamic query
is the least favorite. More interestingly, the multifaceted relational
visualization (including related interactions) is a strongly appealing
feature. Many users rated it as one of their most favorite features.

Fig. 10(b) provides the ratings statistics for each feature (the scores
range from 1 to 7). All features have fairly high scores on both useful-
ness and ease of use, though search and soft-cluster visualization were
rated the highest in both aspects.

7.3 Expert Interview
Based on the Google Health data, we also performed 30-minute one-
on-one interviews to three medical doctors who have very strong do-
main expertise. The first doctor is an emergency physician with over
30 years of hospital-based experience. He has published multiple ar-
ticles and book chapters on both clinical and management subjects.
The second doctor is a well-respected health care and biotechnology
executive who has more than 30 years of expertise in sophisticated
managed care organizations, strategic planning, and operations man-
agement. The third doctor is a young medical professional in a hospi-
tal.

All of them were very impressed by the interactive visualization
that FacetAtlas provides. The first physician was amazed by FacetAt-
las. He considered FacetAtlas “...extremely creative, and has great
potential for clinical therapeutic usage and diagnosis decision sup-
port.” We asked him to elaborate on how he believes FacetAtlas can
help with diagnosis support and why he think so. He believes that the
outlier visual patterns can “ ... enhance the current thought process of
physicians, and help create the subtle associations between different
concepts.” After we explained the patient education scenario, the first
physician confirmed by saying “this will be very helpful for nurses
who run the self-care education activities to better engage patients.”
Furthermore, the second physician believes that “this tool has great
potential as an education tool for interns and residents who have just
started their medical career”. All three physicians believed that Fac-
etAtlas can also be useful as an alternative interface for many med-
ical resources such as PubMed, UpToDate and even classic medical
textbooks. They believed the visual search exploration capabilities of
FacetAtlas can help medical researchers and MD students explore the
medical literature more effectively. Two of them expressed a strong
interest in being the first users of a professional version of FacetAtlas
based on authoritative sources of medical literature.

8 CONCLUSION

In this paper, we presented FacetAtlas, a multifaceted visualization for
entity-relational text documents. FacetAtlas is able to visualize both
global and local relations of complex text document collections. In
particular, global relations are displayed through the use of a density
map; and local relations are conveyed through compound nodes and
edge bundling techniques. FacetAtlas also provides rich interactions
such as filtering, visual pattern highlighting, and context switching.
These interactions enable users to examine a text corpus from multi-
ple perspectives. We performed an in-depth case study on a patient
education application in the health care domain. The feedback from
both regular users and medical professionals was extremely positive
and confirmed our main design objectives. In future work, we plan to
apply FacetAtlas to more applications, to incorporate the time dimen-
sion in the visualization, and to conduct more thorough user studies.
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