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Streaming linear
media objects has
become ubiquitous
on today’s Internet.
Interactive,
nonlinear media
objects, such as large
3D models and
visualization
databases, have
proven difficult to
stream. The Channel
Set Adaptation
(CSA) framework
lets clients request
custom data flows
for interactive
applications using
standard broadcast
or multicast join and
leave operations.
CSA scales to
support large user
groups while
providing interactive
data access to
clients.
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ore than two decades of research
effort have focused on the vari-
ous challenges presented by
scalable streaming of continu-
ous media data types (such as audio and video).
(By scalability, we refer to the problem of sup-
porting a large number of simultaneous clients by
broadcasting video and audio to hundreds, thou-
sands, or someday even millions of users.
Although other notions of scale and scalability for
multimedia systems are possible and important,
our use of these terms in this article is limited to
this idea.) To date, scalable media streaming has
been largely limited to linear media (audio and
video), which consists of data arranged in a fixed
and linear ordering. (See the “Related Work in
Linear Streaming” sidebar for more details.) Every
user that accesses a linear media stream receives
the same flow of information in the same order.
Recent advances in computing and interactive
technology, however, have led to the growing
importance of nonlinear media, such as video
games, interactive visualizations, and virtual
environments. Such objects provide individual
data orderings to each user in response to the
user’s local requirements and interactions.
Linear and nonlinear media provide consumers
with a fundamentally different experience.
Nonlinear media experiences require unique pre-
sentations to each participating user. For example,
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every video game player receives a different flow
of information in response to the player’s interac-
tions and movements within the game. Therefore,
nonlinear media poses fundamentally new chal-
lenges for scalable media streaming. In particular,
we can't deliver a custom data flow to each mem-
ber of a large group of independent users using
traditional media streaming techniques, which typ-
ically rely on common interests across a receiver
population for an entire session. (See the “Related
Work in Nonlinear Streaming” sidebar on p. 70 for
a discussion of related literature.)

To address this problem, we propose Channel
Set Adaptation (CSA), a novel approach that pro-
vides scalable and adaptive streaming for nonlin-
ear media. Our driving design philosophy
involves pushing all per-client work away from
the server and toward individual clients. The CSA
framework consists of three primary compo-
nents—a data representation abstraction, a chan-
nel-based media communication model, and a
client-driven adaptation algorithm—that let us
distribute nonlinear media data sets to large
groups of individual users. Each user can inde-
pendently set data requirements and preferences.
In response, custom data flows designed to match
those individual needs are delivered to each client
in a way that scales to support large user groups.

Achieving scalability

A scalable solution for nonlinear media stream-
ing requires a carefully balanced design. Such a
solution must manage the tradeoff between pro-
viding each client with a custom flow of informa-
tion tailored to the client’s specific needs and
aligning the interests of clients so that scalable
streaming techniques can be brought to bear.

Example nonlinear application

Let’s use a digital museum application exam-
ple to illustrate our discussion. Consider a digital
museum that aims to digitize and share a famous
space (for example, the Palace of Versailles) with
a group of virtual visitors from around the globe.
The application could capture a large set of digi-
tal pictures from the scene, store them in an
image-based rendering (IBR) data set, and make
them available online.

IBR is a computer graphics technique that uses
real-world pictures from a scene as input and ren-
ders novel photorealistic views of the scene in
response to a user moving a virtual viewpoint.!
The views are generated by interpolating between
the captured samples. Users can navigate through
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Related Work in Linear Streaming

Much of our work explores efficient streaming techniques
for large user groups, but a large body of research exists on lin-
ear media streaming for audio and video.

Techniques

Streaming technologies for linear media objects have received
much attention in recent years as media streaming has matured
into a fixture on today’s Internet. Several commercial technolo-
gies, including Real Network’s RealAudio and Microsoft’s
Windows Media are now readily available and used to stream
audio and video content.

These technologies are based on several fundamental
research efforts, including application-level framing,' forward-
error correction,?and early research initiatives in developing suc-
cessful streaming protocols. This has led to several protocol
standards for supporting real-time streaming, including the
Real-Time Transfer Protocol (RTP)* and Real-Time Streaming
Protocol (RTSP).

Large user group distribution

The high bandwidth requirements for streaming audio and
video have motivated several efforts to more efficiently support
the distribution of linear media data to large groups of users.
The multicast network model,® where data streams are effi-
ciently distributed to groups of interested users, was developed
as an efficient alternative to unicast.

Multicast lets a user join a group of receivers, all of whom
receive an identical flow of data. A multicast server can then
transmit a single stream to the entire group, rather than send
individual streams to each user. The single stream is replicated
as needed within the network and delivered to the interested
participants.

Problems with deploying IP multicast, the standard version
of infrastructure multicast, have led to significant effort in devel-
oping application-level multicast (ALM).”# Rather than relying on
core network resources to perform group management and
data replication, ALM performs these tasks at the application
level, using the hosts participating in the multicast session.

Both IP multicast and ALM techniques deliver identical flows
to all receivers, making them ideal solutions for scalable, linear
media delivery. However, even linear data often requires more
flexibility. Several researchers have explored novel uses of mul-
ticast protocols to provide limited flexibility for linear media
access. For example, pyramid broadcasting® and its many deriv-
atives'®'" allow scalable video on demand. Similarly, other work,
such as receiver-driven layered multicast,'>' has explored using

layered media delivery via multicast to improve flexibility in the
rate of data delivery.

Despite this large body of work, scalable solutions have been
largely limited to linear media objects. These techniques depend
on the predictable access patterns associated with linear media
applications. Our work explores techniques that exploit multi-
cast delivery for scalable and adaptive nonlinear media stream-
ing, where data access patterns aren’t known a priori.
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museum would therefore want to stream the data

the virtual space interactively, exploring the scene

with the same freedom that video game players

have while exploring a game’s virtual setting.
IBR data sets are typically large. A digital

set to each user to avoid long download delays.
In addition, because users will navigate the scene
independently, they will each require a unique




Related Work in Nonlinear Streaming

Several researchers have explored techniques for single-user
streaming of nonlinear data sets, particularly in computer graph-
ics. For example, it's possible to stream complex 3D geometric
models by selectively transmitting multiresolution models of
geometric objects based on the user’s navigation of the scene.'
This work introduces a benefit function that evaluates the rela-
tive utility of various models to drive the selective transmission.
Our work uses a similar utility-driven approach that uses a more
generic utility metric.?

Researchers have used progressive mesh representations,
which prioritize geometric information based on their impor-
tance to overall shape, to develop geometric data streams that
are resilient to lost packets during transmission.> The data
encoding includes redundant copies of the low-resolution geo-
metric information to speed loss recovery.

Other researchers have explored single-user streaming for
alternative computer graphics techniques. For example, selec-
tive transmission techniques have been applied to image-based
rendering with concentric mosaics.* Similar work has addressed
the streaming techniques for point-based models.*

These techniques, while supporting streaming access to
nonlinear media, are all based on individual user requests where
the streaming server performs per-client work. As a result, the
server workload and outgoing bandwidth requirements typi-
cally limit these solutions to small user populations.

Recognizing the need for more scalable solutions, some
researchers have explored support for broadcasting geometric
data® for scalable access. However, this work is limited to broad-
cast environments and doesn’t allow any per-client control over
the received data flow. All users receive the same flow of infor-
mation, making it most applicable to small data sets where last-
mile bandwidth efficiency isn‘t a concern. Unfortunately, the
Internet isnt a broadcast medium and the last-mile links are often
the primary communication bottleneck link for individual clients.

The database community has also explored scalable access
frameworks that attempt to scalably support large numbers of
simultaneous queries. Two of these efforts, the Datacycle
Architecture’ and Broadcast Disks,® use solutions that draw on
concepts that are closely related to our work.

The Datacycle Architecture serves high-throughput database
systems. In this architecture, the entire database is broadcast
repeatedly over a local high-bandwidth communication net-
work. Data filters attached to the network then work in parallel
to search the stream of data and satisfy complex queries.

In more recent work, researchers developed Broadcast Disks
for asymmetric communication environments where band-
width is abundant for downstream transmission but expensive
for upstream queries. Data is repeatedly broadcast over a sin-
gle broadcast channel, and rates for repeating the broadcast of
individual data elements are chosen to control their expected
access times.
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flow of image data. We therefore need to support
scalable, nonlinear streaming to support a large
group of museum visitors.

Adaptive extreme

At one extreme, the most adaptive architecture
for streaming IBR data is a unicast client-server
model. Under this model, each client would first
obtain a list of all available images and their
semantic (position in space) and syntactic (encod-
ing dependencies) relationships.

Armed with this list, a client would iterative-
ly determine which images are most important
using a benefit function and request those images
from the server. For example, images located
closer to the virtual viewpoint would be consid-
ered more useful than images located further
away. As the user’s viewpoint moves through the
virtual space, new image requests would be gen-
erated and passed to the server. Allowing the
client to make individual image requests provides
the highest degree of adaptive behavior to each



client. Every client can custom compose the
incoming stream of images by specifically request-
ing each photograph.

However, this approach doesn’t take advan-
tage of any similarity in interests across users. The
server must respond individually to each client’s
requests, and the server’s outbound bandwidth
requirement grows linearly with respect to the
number of clients. This design supports per-client
nonlinear access at the expense of scalability.

Scalable extreme

At the other extreme, the most scalable archi-
tecture for the digital museum application is to
simply order the images in the database and use
existing scalable streaming techniques to distrib-
ute the database. Individual clients would then
receive the streamed data until they have down-
loaded the entire data set.

Although this architecture is highly scalable,
clients have no options for adapting the flow of
images and must settle for the predefined linear
ordering. Clients that are lucky enough to receive
the images they currently need at the beginning
of the stream might be able to immediately pre-
sent the user with the correct virtual view. Clients
that aren’t so fortunate will either have to delay
rendering or make do with suboptimal images
until the images they most need finally arrive.

Broadcast and multicast work well for linear
media distribution because all users have identi-
cal interests in the order of the media units. It
fails, however, to allow the nonlinear data access
required for nonlinear media access as in our
example digital museum application.

Key insights

To negotiate a scalable and adaptive solution
between these two extremes, we must recognize
two key insights:

I The server must do as little per-client work as
possible.

I We can use application-level knowledge to
exploit access coherence.

These two insights are at the heart of the CSA
design.

Simple-server design philosophy. Our design
goal is to push all computation away from the
server and toward the participating clients. Two
factors motivate this client-driven approach.

Although client access to
the media data might be
nonlinear, it is also

not random.
|

First, we're striving for a constant-server-load
model. If the server itself handles any per-client
tasks, it’s impossible to reach that goal. Second,
each client has independent data access and
adaptation requirements that reflect local system
and application conditions. Therefore, the logi-
cal location for per-client adaptive decisions is on
the individual clients themselves.

These two factors led us to adopt a simple-server
design philosophy where the centralized server is
tasked with constant level work loads that are
equally useful for all participants and indepen-
dent from the needs of any individual clients.
This design leads directly to a bounded server load
that is independent of the number of participat-
ing clients and thus achieves scalability.

Exploiting access coherence. Although client
access to the media data might be nonlinear, it is
also not random. As a result, the data needs of sub-
sets of clients might often come into transient
alignment. By employing application-level knowl-
edge about the media data elements and how they
are related to each other as well as how clients are
likely to access them, we can partition the data set
into independent units for which we expect a
high degree of access coherence. Imposing a lin-
ear ordering on these partitioned units lets us uti-
lize traditional scalable streaming techniques (see
the “Media Streaming Techniques” sidebar for
more details).

For example, in our sample application, we
might group all the low-resolution pictures from
one corner of a room as one partition. We could
then distribute this group of pictures using mul-
ticast or broadcast to scalably deliver them to all
interested clients. For example, if five users were
exploring the same corner of a room, they could
all subscribe to the multicast stream that con-
tained the associated cluster of images. Users in
a different room would instead subscribe to an
alternate multicast stream with an image cluster
that more closely matched their requirements.
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Media Streaming Techniques

The result of the media streaming research has been an extensive toolkit

of techniques and methods that developers can use to engineer scalable
streaming solutions for a range of contexts and applications. Layered video
coding' and multiple description coding? techniques let clients adapt media
quality to match channel capacity. Multicast protocols provide efficient dis-
tribution.>* When infrastructure support for multicast proved undeployable,
researchers developed application-level multicast via overlay or peer-to-peer
networks.>¢ Pyramid broadcasting addresses the problem of providing near-
zero delay media on demand for clients that access the same stream but at
different starting times.”® Patching and batching techniques can further opti-
mize system scalability.® The examples here are only a representative sam-
ple of a large body of wiork for each of these techniques.
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least reasonable for all.

Thus, clients can adaptively access the data in
a nonlinear manner by independently choosing
which partitions to access. At the same time, the
server can scalably distribute data to subsets of
clients that choose to access the same partition.

Within a partition, clients won’t have adap-
tive access. Thus, a partition will only be effective
if the subset of clients accessing the data are like-
ly to have similar access requirements for the
data within that partition. If so, the server can
construct a linear ordering within that partition
that might not be perfect for anyone, but it’s at

For example, as users move from one room to
another in an IBR data set, they could change
subscriptions to receive streams that contain pic-
tures from their changing location. At first, the
users could subscribe to low-resolution and
sparsely located image channels for regions along
a hallway where they are moving quickly. After
arriving and pausing to look around a new room,
the client could dedicate all of its bandwidth to
dense, high-resolution image channels for the
users’ new location.

The key to this approach is using application-
level knowledge to determine a partitioning that
provides the appropriate tradeoff between adapt-
ability and scalability. A few relatively large par-
titions will provide greater scalability for the
server, but this forces clients to choose between
coarse subsets of the data linearly ordered in a
way that might be less likely to match their adap-
tive requirements. A larger number of smaller
partitions will provide greater adaptability for the
clients, but this reduces scalability because the
expected number of clients accessing the same
partition at the same time will decrease and the
overall number of channels the server must be
prepared to support increases.

Once this tradeoff is determined and the avail-
able data is appropriately partitioned and
mapped by the application designers into a set of
channels, clients must be made aware of the
available communication channels and their
associated semantic meanings—that is, which
images are in which channel—so they can intel-
ligently subscribe to the multicast streams that
contain information most relevant to their
needs. As those needs change over time, clients
can then quickly subscribe to whichever streams
become most appropriate.

In this way, clients can compose a custom
flow of images based on the order of their sub-
scriptions. At the same time, the server would
perform no per-client work and would only be
responsible for transmitting a fixed number of
streams over a broadcast (similar to a cable TV
network) or multicast-enabled (such as an IP or
application-layer multicast) network. If each
channel remains reasonable in terms of band-
width, the system can support heterogeneous
and time-varying receiver bandwidth by vary-
ing the number of channels each client sub-
scribes to. This channel-based approach to
providing scalable and adaptive access to non-
linear media forms the conceptual foundation
for our research.
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Channel Set Adaptation

Our CSA framework lets individual clients
request custom data flows for interactive appli-
cations using standard multicast join and leave
operations. The three major portions of the CSA
framework include the data representation for-
malisms we use to express data relationships and
dependencies; its communication model, which
we designed to provide scalable service to large
user groups; and the client-driven adaptation
algorithms that perform congestion and content
control. Figure 1 gives the overall architecture.

Data representation

The CSA framework requires a data represen-
tation that formally expresses syntactic (encod-
ing dependencies) and semantic (similarity in
meaning or utility) data relationships. To satisfy
this requirement, we use the representation graph
(RG) abstraction? first proposed as a generic rep-
resentation model for multidimensional adapta-
tion. The RG model is a flexible representation
abstraction designed specifically for expressing
syntactic and semantic data relationships in mul-
timedia databases. It also provides mechanisms
for evaluating the relative utility of individual
elements of information in a database based on
dynamic system conditions.

An RG consists of a graph-based structure
embedded within a multidimensional utility space.
Individual elements of information are modeled as
nodes. Syntactic dependencies are expressed via a
set of edges that connect sets of dependent nodes.
Semantic relationships between nodes are
expressed by the nodes’ positions within the utili-
ty space. Furthermore, the RG model defines clus-
ters as groups of edges that are accessed atomically.
Each cluster is considered a semantically consistent
unit of data. An RG’s underlying structure, includ-
ing the list of nodes and their connectivity, is
stored explicitly as an RG index. Two parts of the
RG abstraction are particularly important within
the context of CSA: clusters and the RG index.
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In our example digital museum application,
the clusters application might represent groups
of images captured from nearby locations. When
modeled using an RG, a data set is essentially par-
titioned into a set of clusters, C = {c,, ..., ¢,}. The
RG model supports multiple-descriptor encoding,
allowing individual elements (such as pictures in
the digital museum application) to be encoded in
more than one cluster.

The RG index is a specification of the RG’s
underlying structure. The index is a concise enu-
meration of the nodes, edges, and clusters that
make up the RG, as well as the definition of the
utility space in which the graph is embedded.
The index doesn’t include any actual media data
and is therefore small compared to the overall
data set. For example, in the digital museum
application, the RG index could include metada-
ta describing the images that make up the IBR
data set (including the image resolution and
camera position) and a description of how the
images are clustered.

Media communication model

Our media communication model is designed
to meet two goals. First, the model must let indi-
vidual users access the nonlinear media interac-
tively and independently. Second, the model must
scale to support large groups of independent users.

In this section, we present our solution for
meeting the two competing requirements of
interactivity and scalability. Our approach deliv-
ers custom data flows to each user while main-
taining a constant and bounded server load that
is independent of the number of users. Our
design consists of three primary components:
channel-based transmission, session initiation,
and client behavior.

Channel-based transmission. CSA requires
the central server to maintain a large set of com-
munication channels, noted as G = {g;, ..., £,}. In
this context, a channel is an individual data flow

Figure 1. Channel Set
Adaptation (CSA)
enables efficient
streaming of nonlinear
media to large groups of
independently
operating users. We
partition the media
object into semantically
meaningful clusters,
labeled c;. These
clusters are then
mapped to a large set of
broadcast or multicast
channels, labeled g,.
Clients compose custom
data flows that match
their local application
requirements without
ever contacting the
central server by
managing their Active
Channel Set through
scalable subscription
operations.
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to which users can subscribe and unsubscribe.
Upon subscription, users have no control over
the data contained in an individual channel.
They must either accept the data flow assigned to
the active channel or unsubscribe to terminate
the flow of information. Both broadcast and mul-
ticast networks easily support our channel-based
transmission scheme’s subscription model.

The number of channels in G is equal to the
number of clusters in the RG model used to rep-
resent a media object. A one-to-one mapping M :
Cr G maps each cluster ¢; € C to a correspond-
ing channel g; € G. Because clusters are semanti-
cally consistent blocks of data (for example, a set
of images captured from the northeast corner of
a particular room), the mapping M assigns a
semantic meaning to each channel g. We append
the mapping information in M to the RG index.

At runtime, the server simultaneously trans-
mits all channels in G, with each channel g; trans-
mitted at a constant bit rate. Although at first this
approach might appear to waste significant band-
width, our experimental results (which we dis-
cuss later in this article) show that for large user
groups CSA is significantly more efficient in
terms of bandwidth than a traditional unicast
approach to nonlinear streaming.

Similarly, CSA might seem inefficient with
respect to multicast channels, which have tradi-
tionally been a scarce resource within a global IP
multicast namespace. However, given the lack of
deployment for IP multicast, CSA would likely be
deployed over application-layer multicast or a
dedicated broadcast network where channels are
locally defined and plentiful.

The data assigned to each cluster is typically
finite in size. In this case, the server transmits the
data on a carousel transmission schedule, repeat-
edly sending out the entire cluster of data with a
cyclical schedule. Each channel is encoded using
forward error correction to guard against lost
packets. In the worst case, a client can continue
receiving a channel for a full carousel cycle to re-
receive a critical lost packet.

In the digital museum example, the data
assigned to each channel is static: a fixed set of
images. In other applications, this data may be
dynamic. Although dynamic data is generally
compatible with CSA, it introduces additional
performance implications, which we don’t study
in this article. The server isn’t responsible for any
tasks other than transmitting data over the set of
channels, adhering to our simple-server design
philosophy.

Session initiation. Clients are responsible for
initiating new sessions. The first step for a new
client is to obtain a copy of the RG index. This
transaction must be supported through some
out-of-band mechanism. For example, the RG
index could be available through a well-known
HTTP or FTP host.

The RG index contains the cluster-to-channel
mapping, M, and the traditional RG index con-
tents describing the semantic and syntactic data
relationships of the associated nonlinear media
data set. The RG index is essentially a menu
describing which communication channels are
available and giving each channel’s assigned
semantic meaning. For example, in the digital
museum application, the RG index would speci-
fy which channels contained images from each
part of the Palace of Versailles.

Client behavior. Following session initiation,
a client has all the information it needs to begin
receiving the nonlinear data stream. Using the
client-driven adaptation algorithm (which we
describe later on), the client begins to manage its
Active Channel Set (ACS).

The ACS is a list of all channels to which the
client is currently subscribed. By dynamically
choosing which channels are in the ACS and
how many channels are active, clients can com-
pose a unique stream that delivers a custom flow
of nonlinear media data that’s individually tai-
lored to meet their needs.

At any point, the set of clients subscribed to a
particular channel are all individually expressing
their interest in a common data stream—the
semantic data assigned to the channel. We use
this common interest to allow scalable delivery.
However, unlike linear media streaming, the
overlap in interests between this set of users is
transient because individual clients will join and
leave channels according to local interests, which
evolve independently over time. For example,
two users navigating the digital museum appli-
cation might momentarily explore the same
region of virtual space when their paths through
the IBR environment cross.

Satisfying design goals. Our media commu-
nication model meets our two primary design
goals. First, individual users can access the non-
linear media stream interactively and indepen-
dently by managing the ACS. Second, our model
easily supports large groups of independent users
because of the channel-based transmission design.



A key requirement for any scalable solution is
the removal of all per-client work from the serv-
er. We achieve this requirement by utilizing a
channel-oriented network infrastructure, which
a broadcast or multicast network can support.
This leads to a highly scalable server-side solution
with a performance independent of the number
of participating clients.

This independence lets us determine a con-
stant upper bound on computation and band-
width requirements. As a result, we can properly
provision servers with a finite and static level of
resources to support, in the ideal case, an infinite
number of simultaneous users.

Client-driven adaptation

Individual clients are responsible for adapting
their incoming data flows to match their own
application preferences and resource require-
ments. Adaptation is accomplished indepen-
dently by each client as it manages its ACS.

ACS management is performed through two
fundamental operations. The first operation,
Sub{g;, ACS}, is used to subscribe to a new chan-
nel. Upon subscription, the new channel is
added to the ACS. The second operation,
Unsub{g;, ACS}, is used to unsubscribe from an
already active channel. This operation removes
channel g; from the ACS, assuming it is a mem-
ber. The two operations are defined as

Subg;, ACS} = ACS L {g}} (1)
Unsublg;, ACS} = ACS\g; (2)

Clients can perform the subscribe and unsub-
scribe operations in broadcast or multicast net-
works without any direct contact with the server.
By defining adaptation in terms of these two
operations, we can ensure adaptive data flows
and scalable performance.

The client-driven adaptation algorithm must
accomplish two tasks. First, it must perform con-
gestion control to manage the speed at which data
arrives. Second, it must perform content control to
achieve the individualized data flows required by
nonlinear media applications. We define both of
these adaptive tasks in terms of the subscribe and
unsubscribe operations.

Congestion control. A client participating in
a nonlinear media stream using CSA must man-
age the speed at which data arrives over the net-
work through a process known as congestion
control. This is done by managing the ACS size.

Under our channel-based transmission
scheme, the server offers a large set of constant
bit-rate channels, G. Clients subscribe to a subset
of this offering, so that ACS c G. Because each
channel g; € ACS is offered at a constant bit rate,
the overall bit rate of the arriving ACS is deter-
mined by the size of the set, or IACSI. The con-
gestion-control problem for CSA is analogous to
the problem faced in Receiver-Driven Layered
Multicast,®* and we apply a similar solution.

At runtime, the client adjusts the ACS size
through subscribe and unsubscribe operations.
At signs of network congestion, such as the detec-
tion of lost packets, the client decreases IACSI
through an unsubscribe operation. To maintain
the most useful data flow after the decrease in
subscription level, a client unsubscribes from the
least useful active channel. We utilize the Utility-
Cost Ratio (UCR) metric? for this evaluation,
which combines application-specific utility and
cost functions to determine how best to adapt a
multimedia data set.

In times of exceptionally strong network per-
formance, the client probes for additional band-
width by increasing IACSI through a subscribe
operation. Once again, we use the UCR metric to
determine which channel should be added to the
ACS.

We use a series of timers for each subscription
level to improve stability and to allow the system
to converge more quickly to an appropriate sub-
scription level.

Content control. In parallel with congestion
control, each client must also perform content
control. This task is unique to the problem of non-
linear streaming. In traditional linear media appli-
cations, data is delivered in a fixed order and
there’s no freedom to change the order to meet
application needs. However, individualized con-
trol over the contents of an arriving data stream is
a primary requirement for nonlinear media access.

Content control is performed by aggressively
changing channels over time, managing the ACS
to ensure that the active channels match the cur-
rent application requirements. Recall that the
data-representation abstraction builds clusters
that are semantically consistent. As a result, each
channel has an associated semantic meaning.
This lets us use channel-subscription operations
to express an application’s needs for specific
semantically meaningful units of data.

At runtime, a client iteratively compares the
least useful active channel, g,.., with the most
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useful inactive channel, g,..ive. Whenever it dis-
covers that the utility of g, 1S greater than that
of S,uiver the two swap positions and g,.cive
becomes an ACS member.

The channel subscription pattern is driven by
the evaluation of utility performed on each iter-
ation. We use the same UCR metric as the con-
gestion-control algorithm for determining each
channel’s relative utility.

The UCR metric is a spatial measure of utility
defined on the RG structure included in the RG
index. Most importantly, it evaluates utility with
respect to the current application conditions and
preferences. As a result, the sequence of sub-
scription operations performed in the adaptation
process is determined uniquely on each client in
response to user interactions and locally chang-
ing system conditions.

Each client will exhibit its own pattern of sub-
scription requests based on its own local needs. For
example, Figure 2 illustrates a possible sequence of
subscription operations over a small time window.
In the figure, the ACS starts at size two and grows
to size four with the subscriptions at times t; and
t,. At time t;, the congestion control algorithm
determines that the ACS is too large and contracts
the ACS back down to size three. The content con-
trol algorithm initiates a channel swap at time t,.
This is followed by another subscription to enlarge
in the ACS (at t;) and another channel swap (at ;).

The concatenation of data flows, following a
series of subscribe and unsubscribe operations,
produces a unique data flow delivered to each
individual client. In addition, the unique flow is
composed without any direct communication
between clients and the server.

Experimental prototype
We developed an experimental prototype to

evaluate the performance of CSA using an IBR tool
for digital museums as the target application.

Prototype application

IBR environments allow free viewpoint explo-
ration of digitized spaces, immersing users in a
photorealistic recreation of a virtual place that they
can navigate interactively. When combined with
digital museums, these environments promise to
enable large populations from around the globe to
explore remote artifacts and locations.*

IBR applications require nonlinear access to
possibly massive sets of images as input to their
reconstruction algorithms, making them a strong
match for our work.

We designed our prototype as a client-server
system with a single image server that uses CSA
to scalably transmit streams of images to a set of
interested clients. The sample data set we used in
our experiments consists of approximately 8,000
color images captured from within a library envi-
ronment. Fach image has a 512 x 512 pixel res-
olution. The pictures are distributed across a 2D
plane at eye level.

We use an RG composed of nearly 16,000
nodes, corresponding to each of the 8,000 images
stored at two resolutions. The number of clusters
in the RG varied across experiments. The overall
RG was embedded within a 5D utility space,
defined by three spatial dimensions, image reso-
lution, and spatial density.

Experiment testbed

We performed a series of experiments to eval-
uate CSA’s performance. Rather than rely on
network simulation, we executed our experi-
ments on the Emulab network testbed,®> which
uses network emulation to achieve more realis-
tic operating conditions. Using emulation as the
basis for our evaluation let us send live data
flows over real networks to real machines. At the
same time, it provided an experimental plat-
form within which we could control several crit-
ical parameters to gain a better understanding
of CSA’s performance across a range of operat-
ing environments.

In all our experiments, we employed network
topologies utilizing a single server with a 100-
Mbps network connection. Our network model
assumed that all bandwidth bottlenecks occur
within the “last mile” for each client. Therefore,
we modeled all core links within our topology
with the same 100-Mbps bandwidth as the serv-
er. Links connecting clients to the core network



were given a fixed bandwidth of 5 Mbps for all
the experiments we report in this article.

Experiment methodology

Our methodology in evaluating the perfor-
mance of our experimental prototype involved
client emulation and formulating the Summed
Utility Metric (SUM).

Client emulation. Because our experiments
required that we simulate large groups of users,
we were forced to emulate user behavior through
an automated process. For all experiments, par-
ticipating clients navigated a 10-minute path
through the IBR data set. The path included var-
ious movement types including fast and slow
movements and direction changes.

During the 10-minute execution time, we com-
puted a performance metric once per second. (We
describe the performance metric in more detail
later on.) When presenting average performance
values, we considered only the second 5 minutes
of performance data from each 10-minute session.
This let us avoid any transient events that might
occur during the early and less stable moments of
a session when analyzing average behavior.

SUM performance metric. Throughout our
evaluation, we measured performance using the
SUM, an application-independent performance
metric for evaluating our prototype’s behavior
based on the abstract adaptation framework.? The
SUM measures system performance as a function
of the RG’s current state.

The SUM requires no domain-specific knowl-
edge because it’s defined as a function on the
abstract RG data structure. Application knowl-
edge is incorporated into the metric through the
application-defined utility metric. The SUM mea-
sures how well a system delivers data to a client
in response to a specific utility metric. Therefore,
we can compare the performance of various
delivery mechanisms as long as the underlying
RG and utility metrics remain the same.

The SUM is derived from the notion that the
system'’s adaptive performance can be measured
by the utility of the data it has obtained at any
given point in time. The RG structure lets us
mark obtained data elements by placing the ele-
ments in the resolved state. We can then apply
the utility metric to each resolved node. The
SUM is the sum of all the resolved node utility
values. (A full discussion on possible node states
and state transitions is beyond the scope of this

article. See related work? for more information.)
We formally define the SUM metric as

SUM = 2 UtilMetric(n;)
meR (3)

where R is the set of all resolved nodes and Util-
Metric is the application-specific utility metric.

The SUM is a measure of performance at a sin-
gle point in time and is therefore highly dynam-
ic. To capture a reliable measure of system
behavior, we must repeatedly evaluate the SUM
metric over a period of time. For this reason, the
results presented in the next section are evaluat-
ed using either a cumulative or average value of
the numerous instantaneous SUM values cap-
tured during each experiment.

Results

We performed a series of experiments using
our prototype and the Emulab network testbed.
These experiments highlight CSA’s capability.
We also explored the impact of certain engineer-
ing parameters on overall performance.

Scalable delivery

We performed a series of experiments to eval-
uate performance at a range of group sizes. Our
evaluations compared three delivery mechanisms.

First, we configured the prototype to use the
traditional unicast request-response model for
nonlinear media distribution. The remaining two
configurations were CSA-based, using multicast
and broadcast networks.

In the two CSA configurations, the broadcast-
based experiment serves as a benchmark for ideal
multicast performance. Broadcast supports the
same channel-based subscription model as mul-
ticast, but without the overhead of group man-
agement. However, broadcast solutions are only
deployable over dedicated networks (such as
cable TV). For this reason, we also include results
from experiments using multicast-based CSA.

In each of the three configurations, we exper-
imented with group sizes ranging from one to 65.
Because we used emulation with actual hardware
resources, the upper limit in this range was deter-
mined by the testbed’s size. We used the same
adaptation library and identical utility metrics
across all experiments, letting us compare per-
formance using the SUM metric.

Under both CSA variants, we used identical
RG representations with 160 clusters and there-
fore 160 channels. For unicast, we used the same
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RG, but we placed every edge in its own cluster,
resulting in a cluster count of 15,568. Because
clusters define the granularity of data access, this
change provided complete freedom of access to
the unicast experiments.

Figure 3 shows the results of these experi-
ments. For all experiments, we provisioned the
server with 100 Mbps of bandwidth and each
client with 5 Mbps. As a result, the unicast server
was able to fully support nearly 20 clients (n = 20)
before saturating its network resources. At small
group sizes of n < 20, the unicast configuration
outperforms the broadcast-based CSA variant by
roughly 14 percent. The increase in performance
for unicast is directly attributable to the two
orders of magnitude increase in the number of
clusters. The additional clusters provide greater
flexibility in data access and let the clients make
data requests to more tightly match their require-
ments. We call the drop in performance due to
clustering in CSA the cluster penalty.

Once the group size reaches n = 20, the uni-
cast server’s bandwidth reaches its saturation
point. Past this point, the performance drops as
the group size increases. Performance will asymp-
totically approach zero as the server’s bandwidth
is divided in service of more and more users.

Under broadcast-based CSA, performance is
independent of group size. This important result
shows that our solution can deliver independent
nonlinear media streams to large user groups
without saturating the central server. This is
highlighted by the flat plot for broadcast perfor-
mance in Figure 3. Although CSA pays a penalty

in performance for small group sizes, it dramati-
cally outperforms unicast for large groups of
users. After a crossover point at n = 32, the drop
in unicast performance due to congestion is
higher than the cluster penalty. As n grows, the
performance gap continues to increase.

The exact location of the crossover point is
determined by several engineering parameters
including the amount of bandwidth provisioned
to the server, the average bottleneck bandwidth
for each client, and the degree of clustering used
in the CSA solution. However, the general shape
of the plots in Figure 3 will hold regardless of the
specific parameter values. These results show that
a fine-grained unicast architecture remains the
appropriate solution for small user groups. The
CSA solution will perform far better with larger
group sizes.

The third plot in Figure 3 shows that the per-
formance for multicast CSA, similar to broadcast
CSA, exhibits immunity to group size. Perfor-
mance remains flat as group size climbs toward 65.
However, the multicast configuration performs
slightly worse than broadcast. The drop in perfor-
mance is due largely to leave latencies that delay
the effect of subscription operations, which are
the principal adaptive mechanism. Slower adap-
tation leads to a drop in performance. (We further
explore the impact of these overheads shortly.)

The absence of join and leave latencies for
broadcast-based CSA makes its performance a
benchmark for ideal CSA performance. It corre-
sponds to the best possible performance for any
multicast-based CSA implementation.

Adaptation for congestion control

A key component of the client-driven adapta-
tion algorithm is congestion control. As we
described earlier, we adjust the ACS size in
response to changes in network loss rates. When
network conditions remain positive, the ACS size
is increased and data arrives at the client at a faster
rate. When the client detects significant loss rates,
it shrinks its ACS and the data rate decreases.

We evaluated our congestion-control algo-
rithm’s performance by observing its behavior in
the face of competing TCP traffic. In one experi-
ment, we began a new CSA session for a client that
initially had no competing traffic over its bottle-
neck link. After two and a half minutes (t = 150),
we introduced a 180-second load of simulated
HTTP traffic over the congested link. At t = 330,
the HTTP traffic ceased. Figure 4 shows the results.

In the first 30 seconds, the ACS size quickly



increases as the client performs its initial probe
for available bandwidth. At = 30, the ACS grows
to size 11 and congests the bottleneck link. The
increase in ACS size is matched by a spike in the
loss-rate estimate. As a result, the congestion-
control algorithm backs the ACS down to size 10.
From t = 30 to t = 150, the client continues to
probe for additional bandwidth, but at growing
intervals as the timer duration increases.

At t =150, the competing HTTP traffic begins
flowing over the bottleneck link and the mea-
sured loss rate begins to climb. Typically, the
client would back down extremely fast in
response to the increased loss rate. However, in
this case, as Figure 4 shows, the client initially
hesitates to back down from |ACSI = 10. The
delayed response is because the onset of compet-
ing traffic occurred nearly simultaneously with a
decrease in ACS size.

After detecting that the loss rates remained
steady, the client continued to back down, with
the ACS size falling to as low as five. At t = 330,
when we removed the HTTP traffic from the bot-
tleneck link, the client detected the improved
network conditions. Very rapidly, it increased the
ACS size to 10, following the same probing pat-
tern as at the start of the session.

Clients can tune the timers used to govern the
rate of increase and decrease in ACS size and con-
figure them to yield faster back-off times at the
expense of lower stability. The specific settings for
the timer parameters should be chosen to best
match a particular application. For example, sta-
bility is less critical for the IBR prototype applica-
tion than it is for typical video streaming. We can
therefore set the timer parameters to adapt more
quickly to changes in network congestion. In the
future, we will explore coordinated approaches to
achieving more TCP-friendly congestion control®
by assigning partial priorities to channels, for
example, for high- versus low-resolution pictures.

Adaptation for content control

Clients perform content control in CSA by
managing the set of active channels over time to
ensure that the data flow arriving at a particular
client matches that client’s application require-
ments. This task is a requirement specific to non-
linear media that typical media streaming
architectures need not address. In contrast, con-
tent adaptation, which we described earlier, is
essential for supporting access to nonlinear
media. Two system parameters directly impact
content-control performance.

[0}
N
S 6
@]
< 4
2
0 1 1 1 1 1
0 100 200 300 400 500 600
(a) Time (seconds)
0.30 g
0.25| .
v 020+ i
S o015} 1
0.10f ]
0.05 M i
O I 1 3 Il 1
0 100 200 300 400 500 600
(b) Time (seconds)

Leave-latency impact. The CSA adaptation
algorithm uses subscription operations to per-
form content and congestion control. Any sig-
nificant latency between the issuance of a
subscription operation and the actual effect on
transmission can have a dramatic impact on
overall performance.

In particular, various multicast implementa-
tions (such as IP multicast and application-level
multicast protocols) exhibit a range in leave
latency—the time it takes between an unsub-
scribe request and the actual termination of the
data flow. For example, our experiments found
that IP multicast showed an average leave laten-
cy of about three seconds. Depending on their
design, ALM protocols can be significantly bet-
ter or worse.

We designed an experiment to evaluate the
impact of leave latency on CSA performance by
introducing artificial leave latencies from O to
5,000 milliseconds. Figure 5 (next page) gives the
results. The experiment shows that longer laten-
cies have a negative impact on performance. In
particular, the 3-second leave latency measured
in our IP multicast experiments is far from the
ideal range for supporting CSA.

Our results show a steep drop in performance
at between 2 and 3 seconds of leave latency. The
overall trend in performance is important.
However, the drop’s exact slope highly depends
on the fraction of time spent on overhead and on
the experiment’s specific parameters:

Figure 4. Rate
adaptation in response
to HTTP cross traffic.
The adaptation
constants for altering
the Active Channel Set
(ACS) size can be tuned
to provide quicker back-
off at the expense of
data-rate stability. The
plots show (a) ACS size
versus time and (b) loss
versus time.
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Overhead =
(SubscriptionOpLatency/ListenTime) (4)

When the average duration for a single sub-
scription is long, the inefficiency introduced by
the leave latency is relatively small and the
impact on performance will be lower. Conversely,
if the average subscription duration is short, the
overhead is large and can dramatically impact
performance.

In other research, we're developing Strand-
Cast,” an ALM algorithm that attempts to mini-
mize leave latency, and therefore overhead, while
supporting a high rate of subscription operations.
In the future, we plan to evaluate StrandCast as
the underlying multicast protocol for CSA and
expect that several design properties, including
low leave latencies, will make it ideal for CSA-
based applications.

Bandwidth impact. Bandwidth is a second
parameter that has a direct impact on content-
control performance. Figure 6 shows the results
from a series of experiments in which we mea-
sured average performance across a broad spec-
trum of network bottleneck bandwidths, ranging
from 0.1 to 10 Mbps. As expected, content con-
trol on clients with a higher bit rate outper-
formed those provisioned with lower capabilities.
The adaptation algorithm uses additional band-
width to obtain additional channels of data,
yielding higher SUM values.

More importantly, the results indicate that
marginal utility gained from each unit of addi-
tional bandwidth decreases. The shape of the
curve in Figure 6 illustrates this behavior. We
find the steepest gains in utility when increasing
bandwidth from a low value. The gains tend to
plateau as the bottleneck link speed increases.

Although not necessarily intuitive, the
decrease in marginal utility at higher bit rates is
the designed result for effective content control.
For example, the ideal content-control algorithm
would ensure that for a bottleneck bit rate of x,
the system can receive the n most useful units of
media data (nodes in the RG data model). In this
scenario, there wouldn’t be a single node of data
yet to be received that had a higher utility than
any of the n nodes already received by the client.

Meanwhile, assuming all nodes are the same
size, a system with a bottleneck bit rate of twice
the previous example would be able to resolve
those same n nodes plus n additional nodes.
However, due to the content-control algorithm,
the additional n nodes wouldn'’t be as useful as
the first n. Therefore, although the system with
twice the bandwidth was able to resolve twice as
much data, the additional data wasn’t as useful
as the first n nodes.

The results of this experiment show that the
CSA content-control algorithm exhibits the
desired sublinear growth in utility. Figure 6
shows that the marginal increase in utility drops
continuously as bandwidth increases. The shape



implies that at each configuration the CSA con-
tent-control algorithm can effectively access the
most useful data, leaving less desirable data to be
received at higher data rates.

Granularity of access

An important parameter in configuring a CSA
session is the number of channels in set G.
Because G is mapped to the set of clusters C, the
number of channels defines the granularity of
access to the overall data set. A small size for G
provides relatively few choices for adapting the
ACS, reducing the ability of individual clients to
customize their incoming data flow. Conversely,
a large size of G (noted as IGl) provides a great
flexibility in ACS management and enables high-
ly customized data flows.

In the extreme, a data set where |Gl = 1 corre-
sponds to a single channel and is equivalent to a
common monolithic file that all clients must
download. When |Gl is maximized so that every
byte of data is available through a unique channel,
clients are given random access to the database.

As aresult, additional channels generally result
in higher performance. Figure 7 shows a series of
experiments performed using a range of channel
set configurations. We performed all these exper-
iments using an idealized network environment
with negligible channel subscription overheads.
As expected, we achieved the best performance
with the highest number of clusters, each of
which maps to an individual channel.

In practice, the benefit of additional channels
is greatest when the subscription operation laten-
cy is negligible. However, the impact of latency
on performance is far more pronounced in high-
channel configurations. Figure 8 demonstrates
the results of several experiments where we arti-
ficially controlled the subscription operation
latency within the range of 0 to 1,000 ms for four
different channel set size configurations.

All configurations performed more poorly as
the subscription operation latencies increase, as
the overhead model defined in Equation 4 pre-
dicted. However, the rate of decline was signifi-
cantly steeper in the high-channel plots. The
steeper decline in performance is a direct result
of the increased rate of channel-subscription
operations for high-channel configurations. The
faster pace of subscriptions is exactly what makes
large channel sets beneficial: additional channels
aid in composing custom data flows. However,
the increase in subscription operations reduces
the expected listen time for any given channel.
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As these results and Equation 4 reflect, a shorter
expected listen time magnifies the impact of
changes in the subscription latency.

At first glance, these results seem to hint that
it would be desirable to use an enormous num-
ber of channels to obtain the best overall perfor-
mance. In fact, in the absence of any overhead
costs, that would be the case. This is why the
random-access unicast configuration outper-

Figure 8. Relationship
between performance,
latency, and the
number of available
channels.
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forms both CSA variants for small user groups.

However, in a CSA-based system supporting
large user groups, this wouldn’t be practical. First,
any multicast infrastructure will introduce some
amount of subscription operation latency.
Second, the expected listen time in this extreme
configuration would be extremely short. Equation
4 shows that these two factors combine to pro-
duce extreme amounts of overhead and lead to an
inefficient solution.

A practical system design must balance the
benefit of a high channel count access with the
overhead cost of supporting it. The optimal com-
promise highly depends on subscription operation
latencies associated with the multicast infrastruc-
ture. This conclusion motivates additional work
in developing more efficient multicast algorithms
with low subscription operation overheads, espe-
cially in high-churn environments.

Channel cycle size distribution

The amount of data assigned to each CSA
channel is a critical design decision in formulat-
ing an effective mapping M : C— G, which binds
specific clusters of media data to individual chan-
nels, as we described earlier. Just as the number
of channels influences overall performance, so
too does the relative size of each cluster. For
example, one mapping might use clusters of data
that are all the same size. Conversely, the clusters
could be specified so that their size greatly varies.

The amount of data in a cluster directly deter-
mines the cycle time for the associated commu-
nication channel. This is because CSA transmits

the data for an individual channel using a
carousel schedule, where every byte is sent out
over the channel before starting once again from
the beginning.

The time required to send out all bytes over
the channel is the cycle time. For clusters with lit-
tle data assigned to them, the cycle time can be
short. For larger clusters, the cycle time can be
long. The cycle time is critical because it deter-
mines the expected time required to access a spe-
cific node of data. Because CSA transmits data
cyclically and clients can join a channel at any
time, the expected access time for any node is
equal to one half the cycle time. Therefore, the
expected access time for a node in a large cluster
is much longer than the expected access time for
data in a small cluster.

In practice, the proper configuration of edges
to clusters highly depends on the application.
Certain applications might perform best with rel-
atively even access times across clusters. Other
applications might require fast access to certain
data elements and would therefore perform bet-
ter using variably sized clusters.

Figure 9 highlights the impact of channel
cycle size on our prototype application. We mea-
sured the application’s performance using two
different configurations. In one session, we
arranged the system with clusters of roughly
equal size. This provided a nearly constant
expected access time across the entire data set. In
the second session, we variably sized the chan-
nels to allow faster access to low-resolution data
(at the expense of higher access times for high-
resolution data).

The two plots in Figure 9 show the cumulative
SUM value over the life of each of the two ses-
sions. The plots indicate that for the prototype
application, equally sized channels have superi-
or performance when compared to variably sized
channels. The results in this experiment indicate
that, for this application, the benefit of faster
access to certain data isn’t worth the penalty of
longer access times to the remaining data.

Generally, the impact of cluster size on per-
formance is highly application dependent, and
careful experimentation should be performed to
determine the optimal configuration. As these
results highlight, the allocation of data across the
set of channels can have a significant impact on
overall performance.

Future work
Despite the promise of our initial results, sev-



eral areas still require additional research. For
example, our algorithm for congestion control
works on the assumption that each client is oper-
ating behind its own bottleneck link. This is
often the case where last-mile links are responsi-
ble for a large fraction of bandwidth bottlenecks.
However, in the future, we want to move beyond
this assumption and plan to enhance our algo-
rithm to perform well even in the presence of
nonshared bottleneck links.

We're also interested in exploring dynamic
cluster-to-channel mappings. Our current proto-
type assumes a static mapping that is predefined
in the RG index. A dynamic mapping could
enable distribution of dynamic data sets where
content assigned to each channel changes over
time. In addition, dynamic mappings could help
reallocate communication resources to better
serve high-demand portions of the overall data
set—that is, the Mona Lisa effect, where certain
parts of a data set get disproportionate attention
from users just as the famous painting gets far
more attention than others in the Louvre.

Another important area for future work is
evaluating our framework with large user groups.
Extrapolating the results we present here hints at
strong performance benefits for large group sizes,
but our experiments were limited to groups of 65
because of the required infrastructure.

Finally, our results highlight the need for an
efficient multicast protocol that has low sub-
scription operation latency and that can support
high-churn environments. Most of the existing
protocols have fairly high subscription latencies
and are designed to support long-term sessions.
CSA places fundamentally new demands on the
multicast infrastructure, and new protocols can
be designed that would provide significantly
improved performance. We've already begun
implementing StrandCast’ to support technolo-
gies like CSA. MM
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