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ABSTRACT
We present a new representation for image-based interactive walk-
throughs. The target applications reconstruct a scene from novel
viewpoints using samples from a spatial image dataset collected
from a plane at eye-level. These datasets consist of pose augmented
2D images and often have a very large number of samples. Our
representation exploits spatial coherence and rearranges the input
samples as epipolar images. The base unit corresponds to a col-
umn of the original image that can be individually addressed and
accessed. The overall representation, IRW, supports incremental
updates, efficient encoding, scalable performance, and selective in-
clusion used by different reconstruction algorithms. We demon-
strate the performance of our representation on a synthetic as well
as a real-world environment.

1. INTRODUCTION
The ability to represent and visualize large, sampled,3D datasets

is becoming increasingly important in a variety of applications.
These include virtual environments, computer-aided design, educa-
tion and virtual tourism. Recent advances in acquisition and model-
ing technologies have resulted in large databases of real-world and
synthetic environments. The resulting datasets may include mil-
lions, and in some cases, billions of primitives or samples. Their
enormous size poses a number of challenges in terms of efficient
representation, manipulation and interactive display.

In this paper, we mainly deal with interactive walkthrough appli-
cations which give the users a sense of immersion in an environ-
ment. Our goal is to handle large synthetic environments created
using modeling systems as well as real-world scenes captured us-
ing camera-based acquisition systems. Given the complexity of
large synthetic environments, many techniques for interactive dis-
play pre-compute a set of images or impostors from different view-
points in the scene [3, 19, 37]. In both cases, the resulting datasets
consist of a large number of images, augmented with pose infor-
mation, which relates these images to each other spatially. Given

the viewer’s position at runtime, the visualization system uses IBR
(image-based rendering) techniques to generate new images from
the existing set of samples. In particular, it generates novel views
by resampling a set of images of the environment, without relying
upon an explicit geometric model.

Most of the work in image-based rendering has dealt with cre-
ating an appropriate subset of the complete7D plenoptic function.
These include techniques for5D plenoptic functions [6, 15, 22],
4D plenoptic functions [10, 18], inside-looking-out3D plenoptic
functions like concentric mosaics [28], other3D plenoptic func-
tions [31], 2D plenoptic functions [7, 30] or using a sequence of
video streams [32]. Different algorithms and techniques vary based
on the restrictions on the environment (e.g. unobstructed spaces) or
the underlying acquisition methods or constraints on the viewer’s
motion. However, none of these representations and reconstruction
algorithms are directly applicable to image-based walkthroughs of
large and complex environments.

Some of the key issues in generating image samples relate to
the sampling density or using portions of a given sample for recon-
struction from a novel viewpoint. Moreover, no robust or automatic
algorithms are known that can tightly bound the reconstruction er-
ror and guarantee the fidelity of the new image. As a result, some
techniques generate new samples in an adaptive manner and incre-
mentally add these samples to the database. Furthermore, different
samples are treated in a non-uniform manner by the reconstruction
algorithm. Some of the commonly used encoding techniques used
in JPEG and MPEG standards do not provide capabilities to sup-
port this functionality. There is relatively little work on efficiently
representing large collection of spatially-augmented image samples
for walkthroughs.

1.1 Main Results
We present an efficient and incremental representation of image-

samples used for interactive walkthroughs. We call our representa-
tion IRW, an ‘Incremental Representation for Walkthroughs’. Our
formulation takes into account the characteristics of the applica-
tion, where the user’s motion is constrained to a plane at eye-level
and allows for translation and yaw-rotation. The application recon-
structs a 4D plenoptic function from a set of images augmented
with camera pose information.

Given 2D image samples, we reorganize them based on the cam-
era pose to take advantage of spatial coherence in object space. The
base unit in IRW corresponds to a single column in each image
that can be individually addressed and accessed. We calculate the
epipolar coordinatesfor each column and group them intoepipo-
lar images. Within this image, each column is represented using a



one-dimensional wavelet. Our representation, IRW, supports:

• Incremental Updates: New samples are easily added with-
out any major recoding or reorganization of existing data.
• Efficient Encoding: Compression rates are comparable to

previous methods like JPEG.
• Scalable Performance:Compression rates improve as the

database grows in size. At the same time, query times remain
relatively constant.
• Reconstruction Algorithm Independence: The represen-

tation is independent from the choice of reconstruction algo-
rithm.
• Selective Inclusion: When coupled with a reconstruction

algorithm to measure a sample’s utility, our representation
stores individual samples only when they improve the qual-
ity of reconstruction.

We have implemented a prototype of IRW and demonstrate its
performance on both synthetic and real-world spatial image data.
Moreover, we compare its performance with JPEG.

1.2 Organization
The rest of the paper is organized in the following manner. In

Section 2, we provide background information and related work.
Section 3 presents an overview of our approach. Section 4 outlines
the epipolar coherence exploited by our representation while Sec-
tion 5 details the IRW representation itself. In Section 6 we discuss
different queries that can be performed based on our representa-
tion. In Section 7 we present experimental results obtained from
our prototype implementation. We conclude the paper in Section 8
along with a discussion of future work.

2. BACKGROUND AND RELATED WORK
This section provides background on the plenoptic function, im-

age representations as a sampling of the plenoptic function, and a
class of applications that use images to reconstruct the plenoptic
function for novel viewpoints. These concepts provide a general
context for our work which concentrates on the design of an im-
age representation that is congruent with the needs of walkthrough
applications. We also review previous work on different IBR ap-
plications and representations, and efficient techniques to encode
them.

2.1 The Plenoptic Function
The plenoptic function in its most general form describes all light

that moves through a scene. The7D plenoptic function, as intro-
duced by Adelson and Bergen [1], describes the light intensity pass-
ing through every viewpoint, in every direction, for all time, and for
every wavelength. Formally, the plenoptic function is defined as:
p(x, y, z, θ, φ, λ, t), where [x, y, z] determine the position within
the scene, [θ, φ] represent the orientation,λ corresponds to the par-
ticular wavelength of light, andt represents the time.
More intuitively, we can consider a form of the plenoptic function
where the intensity of all visible wavelengths for a particular po-
sition and orientation is mapped into the YUV color space. This
formulation can then be expressed as:

[y, u, v] = p(x, y, z, θ, φ, t)

Within the framework of the plenoptic function, an image is sim-
ply a discrete sampling of this function at a particular time. Fur-
thermore, a video sequence can be regarded as a sampling of the
plenoptic function at regular spaced time intervals along a moving
camera path (i.e.,x, y, z, θ, andφ are functions oft). Compact
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Figure 1: A typical IBR application starts by selecting a new view-
point from which to render the scene. This is most often done by
user control. The application then queries a sample database for
samples of the scene from nearby the new viewpoint. These sam-
ples are then used to reconstruct the scene from the novel vantage
point.

(i.e., compressed) representations of still and moving images rely
on the coherence of the plenoptic function across its parameters.

For example, many still and moving image representations use
a block-based discrete cosine transform (DCT) [26]. Typically, an
8×8 block of pixels is transformed using the 2D-DCT. Essentially,
these64 pixels are samples of the plenoptic function from a par-
ticular point in space (i.e., the coordinates of the camera position)
and a range of viewing angles. The DCT provides compression by
exploiting the coherence of the plenoptic function over this view-
ing angle range. Similarly, video representations that rely on mo-
tion compensation and differential encoding exploit the coherence
of the plenoptic function across different parameters (i.e., position,
viewing angle, and time).

A number of techniques have been developed for exploiting dif-
ferent kinds of coherence within various parameters of the plenop-
tic function. These include the DCT, wavelets [34], differential
encoding, conditional replenishment, and motion compensation. In
practice, these techniques constitute a toolbox from which specific
representations can be formed. Some specific representations (e.g.
JPEG [24], JPEG2000 [14], MPEG [12, 13], H.261 [33], etc.) for
still and moving images apply these techniques in combination with
more general compression techniques that are not specific to the
structure of the plenoptic function (e.g., entropy coding).

2.2 IBR Applications
Image-based rendering applications, orIBRapplications, use dis-

cretized samples or images in conjunction with spatial information
in order to construct virtual views of the environment from new
camera positions for which no image exists. Typically, the applica-
tion has access to a database of acquired image samples, which may
be acquired using cameras in the real-world or are generated by ras-
terizing the geometric model in the case of a synthetic environment.
These images are associated with spatial information such that the
camera viewpoint and orientation are known. The exact precision
of the spatial information depends on the details of the acquisition
process. The goal of IBR application is to synthesize novel views
not present in the database. Figure 1 shows a block diagram model
of such an application.

In this paper, we restrict ourselves to databases composed of2D
images of real or synthetic worlds that have been augmented with
spatial information. Besides2D image samples, other commonly
used IBR representations include point samples [11, 25], textured
depth meshes [2, 8, 29], multi-mesh impostors [9], range images
[21] and layered-depth images [27]. However, these representa-
tions have been mainly applied to synthetic datasets only, as there
has been relatively little progress towards an automatic technique
for capturing depth of large real-world scenes.



Many image-based rendering algorithms are based on2D im-
age samples and the resulting reconstruction algorithms generate
a lower dimensional approximation of the plenoptic function from
these samples. In [17], a regular array of camera images are used
as samples for reconstructing a 4D plenoptic function for a scene.
They use a “dual-plane” parameterization of the plenoptic function.
A similar dual-plane parameterization of a 4D plenoptic function
is used in [10], and is combined with a low-fidelity geometric rep-
resentation of surfaces in the scene to select the appropriate depth
of focus on a per pixel basis. The concentric mosaics [28] approach
captures an inside-looking-out 3D plenoptic function by constrain-
ing the camera to a planar concentric circle.

Image-based walkthroughapplications attempt to synthesize new
viewpoints of a real or synthetic environment using images ac-
quired from a single eye-level horizontal plane of the environment.
Furthermore, the view planes of the images are perpendicular to
this plane. The resulting image samples do not form a regular pat-
tern, and as a result techniques based on the dual-plane parame-
terization of 4D parameterization or restricting the camera’s path
are not directly applicable. More recently, Aliaga and Carlbom
have presented plenoptic stitching [4], a parameterization of the 4D
plenoptic function for interactive walkthroughs as well as a recon-
struction algorithm based on2D image-samples. Our incremental
representation, IRW, can be used to represent the resulting samples
as well as reconstructions from new viewpoints.

2.3 Representations for IBR Applications
Many techniques have been used for compressing the dual-plane

parameterizations of 4D plenoptic functions. These include vec-
tor quantization and entropy coding for light-fields [18], wavelet
basis [16] and block-based DCT encoders [23]. Gortler et al. [10]
have treated lumigraphs as arrays of2D images and proposed using
JPEG and MPEG for intra-frame and inter-frame compression, re-
spectively. Other algorithms include model-based coders for view-
dependent texture mapping [20]. More recently, Wilson et al. have
presented techniques to spatially encode impostors for interactive
walkthrough applications by using a modified MPEG-2 encoder
[36, 37]. In [38], a representation for concentric mosaics is pro-
posed in which image data is realigned to improve image-to-image
coherence and thus improve the performance of a3D wavelet coder.

A fundamental drawback associated with all of these previous
efforts is that they assume all image samples used for reconstruc-
tion are available in advance. In other words, these representations
are not designed for incrementally adding new image samples to
an existing set. To do so, the entire image database must be reor-
ganized and re-encoded. Furthermore, most of these schemes are
unable to distinguish which portions of a new image sample are
actually useful for reconstruction and avoid representing those por-
tions which are not. IRW is constructed with these capabilities as
primary design goals.

3. DESIGN GOALS AND OVERVIEW
This section outlines design goals for an image representation

for IBR applications and provides a high-level overview of our ap-
proach. We examine the goals and assumptions of image-based
rendering applications in order to distill an appropriate set of rep-
resentational design goals and show how currently available repre-
sentations fall short. Finally, we outline our approach which has
been specifically designed to achieve these design goals.

3.1 The Importance of Representation
A representation for the plenoptic function reflects assumptions

about the nature of the coherence within the function as well as the

manner in which an application uses the data. These representa-
tional choices are important for ensuring that the data is organized
and stored congruently with how the data is accessed and used. For
example, JPEG2000 uses a multi-resolutional wavelet to support
progressive image refinement for Web applications. Similarly, the
MPEG standard exploits motion compensation but limits its use to
ensure that errors are not propagated in the presence of loss in a
streaming application. Even the8 × 8 block size most commonly
used for the DCT is the combined result of the likely extent of spa-
tial coherence and the construction of fast algorithms for calculat-
ing the transform with those dimensions.

3.2 Image-Based Walkthroughs
Image-based walkthroughs have a number of characteristics that

govern their requirements for an image representation.

• Different portions of different images are required by the
application to synthesize a novel viewpoint.In general, the
reconstruction algorithm will not make use of all of the image
data within a sample image at the same time. Instead, only a
portion of a sample image is used to reconstruct a portion of
the novel viewpoint. The required portion is determined by
the spatial relationships between the novel viewpoint and the
previously acquired image samples.
• The quality of the reconstruction is generally related to

the density of the image sampling.A dense image sampling
reduces the distance between the novel viewpoint being con-
structed and the samples used for reconstruction. Thus, the
walkthrough application improves the reconstruction qual-
ity over time by adding more image samples to the available
database. In other words, the image sample database may not
be static but instead grows as more samples become avail-
able.
• Denser sampling in portions of the environment in which

the quality of reconstruction is already high is not helpful.
Even as more samples are acquired, not all of the sampled
data are equally useful. Additional samples of the plenop-
tic function that are already well approximated by the re-
construction algorithm may not be worth the additional stor-
age and management cost incurred by adding the data to the
database.

3.3 Representation Design Goals
Given these characteristics of image-based walkthrough appli-

cations, we present a set of design goals for an appropriate image
representation.

• Fine-grained access to image data.Because the applica-
tion generates reconstructions from small parts of many im-
age samples, the representation should provide efficient fine-
grained access to sub-regions of the images.
• Incremental. Once an image database is constructed, we

should be able to include new samples easily without any
major re-encoding or reorganization of existing sample data.
• Fine-grained selective inclusion.Just as we need to access

only portions of an image sample, we also need the ability to
ignore portions of an image sample that may not provide any
new reconstructive capability.

In addition to these application-specific design goals, efficiency
is a design goal for any image representation and is generally mea-
sured in terms of compression ratio for a given quality. However,
some representation techniques that result in higher compression
ratios may simultaneously work against the application-level goals.
A good representation design must find the right balance between
these often competing requirements.



Current image and video representations do not represent a good
balance between efficiency and the application-specific goals of
IBR reconstruction. Most still image representations (e.g., JPEG,
JPEG2000, GIF, PNG, etc.) provide little to no support for ad-
dressing only a portion of the image. For example, even though
JPEG organizes pixels into8 × 8 blocks, they cannot be individu-
ally decoded. Even if these blocks were individually addressable,
the8 × 8 block structure is rigid and does not match the needs of
walkthrough applications. Although JPEG2000 provides support
for organizing picture data in addressable tiles of arbitrary rectilin-
ear dimension, there are no mechanisms for exploiting coherence
between the tiles and/or between the images. This capability is
necessary for our applications because the dimensions of the image
portions used in reconstruction is often quite small. Thus, the rep-
resentation is less efficient if it only exploits coherence within this
addressable unit (as JPEG does with the8×8 block and JPEG2000
does within the user-specified tiling).

Video representations, on the other hand, include techniques to
exploit inter-image coherence, but in a very specific and limited
manner. These representations rely on the implicit assumption that
the images can be completely ordered such that image coherence
is maximized for frames adjacent in the ordering. This ordering is
provided by the temporal timestamp associated with each frame. In
other words, video representations rely on the fact that two frames
close in time are also close in terms of camera position and ori-
entation. Furthermore, these representations assume that access to
frames occurs along this temporal dimension and are optimized for
forward playback of frames. The image data sets used for walk-
through applications, however, are primarily accessed by their spa-
tial relationships and not temporal ones. Furthermore, access to
these frames is driven by the virtual camera path of the reconstruc-
tion which is unknown in advance and is not related to any camera
path associated with the acquisition of the images.

3.4 Overview of Our Approach
In this section, we describe our design of an image representa-

tion for image-based walkthrough applications. In particular, we
assume that the reconstruction algorithm makes use of a set of im-
ages taken from an environment such that the camera viewpoints all
lie on the same plane and that this plane is orthogonal to the image
plane of the camera. Furthermore, we assume the spatial location
of the camera within the environment is known. This is typically
the case in image-based walkthroughs of real and synthetic envi-
ronments [3, 4, 19].

In our representation, IRW, a single column from a single image
is the base unit which can be individually addressed and accessed.
For each image in the data set, we calculate theepipolar coor-
dinatesof each column. The epipolar coordinate system indexes
columns first based on the view angle, then on position within the
environment along an axis orthogonal to the view angle, and finally
on position within the environment congruent with the view an-
gle. The epipolar coordinate system and the mapping of columns
is described in more detail in Section 5.1. Columns which share
the first two indices but vary in the third index are grouped into
epipolar images. Within this image, each column is represented
using a one-dimensional wavelet. Some columns are encoded as
index columnswhere the wavelet is applied to the original pixel
values. Other columns are encoded asdifferential columnswhere
the wavelet is applied to the difference between the column and the
nearest index column.

Our representation has a number of useful features including:

• Selective inclusion.When a new sample image is added to
the representation, each column is mapped into the epipo-

A1 A2

G

e1
e2

g'2g'1

Figure 2: Epipolar geometry describes the relationship between a
pair of perspective cameras, labeled asA1 andA2, that both ob-
serve a common pointG. The epipolar plane contains these three
points and is shaded gray. The baseline connectsA1 andA2. The
Epipolar e1 and e2 are located where the baseline intersects the
image plane for each camera. Pointsg′1 andg′2 are the projections
of pointG into the two image planes.g′1e1 andg′2e2 are epipolar
lines.

lar coordinate system independently and a decision whether
to include the sample column in the database can be made
on a column-by-column basis. In particular, if the IBR re-
construction algorithm can already reconstruct the column in
question within some specified error bound, the column is
not included. Thus, view angles in the environment which
are not visually complex can be efficiently represented by
only a few columns, obviating the need to store additional
sample data provided by images acquired later.
• Selective access.Each column is individually addressable

and accessible. The representation guarantees that any given
column will depend on at most only one other column, pro-
viding a bounded access time.
• Highly incremental. New sample images acquired after a

representation for an existing set of images can be added eas-
ily with little re-encoding of columns already represented in
the database.
• Epipolar coherence. Columns are grouped by view angle

and then differentially encoded against columns with similar
view angles along a slice of the epipolar coordinate system.
This ensures that the visual structure of adjacent columns is
highly coherent. Furthermore, a simple linear stretch and
offset can be used to map the index column (i.e., the predic-
tive base) to a nearby column, increasing the efficacy of the
differential encoding.

4. EPIPOLAR COHERENCE
Before presenting the detailed design of the IRW representation,

we discussEpipolar Plane Images(EPIs) [5] and their implica-
tions with respect to our work. EPIs have been extensively used in
the computer vision community in their analysis of structure from
motion. Before defining EPIs, we first present a brief overview of
epipolar geometry.

4.1 Epipolar Geometry
Epipolar geometry describes the basic geometric relationship be-

tween a pair of perspective cameras. Suppose we have two cameras
A1 andA2, both of which observe a common point in spaceG, as
shown in Figure 2. The projection of pointG onto the image planes
is shown asg′1 andg′2 respectively. The line connectingA1 andA2

is thebaseline. The pointse1 ande2, where the baseline intersects
the image planes for the two cameras, are theEpipolar. The plane



Figure 3: These two images are EPIs created by extracting one
column for each image in a sequence captured by moving the cam-
era in the view direction and arranging them in sorted order. (a) is
from a real office scene and (b) is from a synthetic model.

defined by the three pointsA1,A2, andG is known as theepipolar
plane. The intersection of the epipolar plane with the image plane
forms theepipolar line. For a pointG and cameraAi, the epipolar
line is also defined by the two pointsg′i andei.

As the pointG moves through space, the epipolar plane rotates
about the baseline, forming a family of planes known as theepipo-
lar pencil. Note that whenA1,A2, andG are collinear, there are an
infinite number of valid epipolar planes, all containing the camera
positions and the pointG.

4.2 Epipolar Plane Images
Consider the case where a camera moves linearly along the base-

line, recording images at various camera positionsAi along the
path. We assume that the camera always observes pointG. We
also assume thatG is not collinear with the camera positionsAi.
We form an EPI by extracting the epipolar line from each camera
Ai, and arranging them in sorted order to form a new image. Be-
cause the EPI is formed of epipolar lines that contain the pointg′i,
the paths traced out by points in the EPI provide insight into the
structure of the scene and camera motion. For example, if the cam-
era motion is perpendicular to the view direction, the pointg′i will
trace out a line in the EPI whose slope is proportional to the depth
of the point.

In this paper, we restrict ourselves to the case where the camera
motion is in the same direction as the view direction. In this case,
if we take the center column of each image, we can form an EPI
as shown in Figure 3. The shapes of the paths seen in the EPI cor-
respond to the perspective effects on features in the scene. Feature
paths flow upwards or downwards as the camera moves closer to
the scene objects. The feature paths approach a vanishing point as
the camera moves further away. Figure 4 illustrates this effect with
three cameras. The EPIs exhibit a very high degree of coherence
from column to column due to spatial coherence in object space.
Regions in the EPI disappear and appear due to occlusion and dis-
occlusion events, respectively.

4.3 Reorganization of Image Data
The IRW representation takes advantage of the inherent coher-

G

A1
A2 A3

Figure 4: This figure shows three camera positions (A1, A2 and
A3) arranged linearly in the view direction. As the camera posi-
tion approachesG, the projection of the house onto the image plane
increases in size. As the camera moves toward the house, the pro-
jection ofG will move upwards until it leaves the image plane. As
the camera moves away fromG, the projection ofG will approach
a vanishing point. Arranging the epipolar lines shown by dotted
lines together into a single image forms an EPI.

ence of spatial data sets by rearranging the image data, column by
column, into EPIs. Because we assume that each image is aug-
mented with pose information, the original images can be viewed
as a collection of columns, all captured from the same position in
world space, but with different camera orientations. We regroup the
columns into EPIs, collections of columns captured along the same
baseline with the same orientation. This reorganization transforms
our dataset from a collection of traditional images to a collection of
EPIs.

5. IRW REPRESENTATION
This section presents the detailed design of the IRW representa-

tion. We start by describing the algorithm that groups the columns
into EPIs. We detail the encoding algorithm and an present an im-
portant encoding invariant. Finally, we describe how our represen-
tation supports incremental updates.

5.1 Epipolar Coordinate System
We assume that we know the position and orientation of the cam-

era used to capture each column. As mentioned in Section 3.4, the
camera position is restricted to a plane at eye-level and the orienta-
tion has one degree of freedom: the angle of rotation about theZ
axis. We can therefore represent the pose for columnCj as a three
dimensional quantityPj = (xj , yj , θj).

Another way to reference each column is to store the angle of
rotationθj , as well as the(xj , yj) values rotated about the origin
by−θj , which we note by(x∗j , y

∗
j ).

We refer to this alternate pose value asP ∗j = (θj , x
∗
j , y
∗
j ). This

form is useful because it allows us to easily group columns together
to form aslice. A slice is the set of columns that share the same
(θj , y

∗
j ) values. See Figure 5 for an illustration of this process.

Columns within a slice are sorted along theX∗ dimension. When
the columns in a slice are viewed as an image, they are equivalent
to an EPI formed by a camera moving in the view direction. By en-
coding columns grouped into slices, we can exploit the coherence
found in the EPI images discussed in Section 4.2.

All three dimensions of the epipolar coordinate system are con-
tinuous. In order to group columns into slices, we discretize the
space. Theθ dimension, ranging from0 to 2π, is split intonθ dis-
crete steps. Similarly, theY ∗ dimension is split intonY ∗ discrete
steps. Because this dimension is a rotation of the traditional y-axis,
its range depends on the radiusr of a bounding circle around all
camera positions and centered at the origin. The range varies from
−r to r. TheX∗ dimension is bounded by the same range and can
be represented at any fixed precision.



Figure 5: Three columns,C1,C2, andC3, are taken from different
camera positions. Part (a) depicts a traditional coordinate system.
The pose for each columnCj is (xj , yj , θj). Part (b) shows the
same columns in an epipolar coordinate system. The old coordinate
system is drawn in light gray. In this new coordinate system,C1

andC2 have the same value along theY ∗ axis, placing them in the
same slice.C3 has a differentY ∗ value and belongs to a different
slice.

5.2 Encoding
Once columns have been grouped into slices, each slice is en-

coded independently. The columns are sorted by their position
along theX∗ axis in the epipolar coordinate system. Each column
is then stored as either an index column or a difference column. In-
dex columns encode the full color data for the column. Difference
columns are predicted from nearby index columns and encode the
difference between the actual color data and the predicted values.
A pointer to the predictor for each column is stored in a separate
structure, along with other data needed for decoding.

5.2.1 Index Columns
For index columns, we transform the raw image data using a one

dimensional wavelet. For our prototype we used the irreversible
1D filter outlined in Appendix F of the JPEG 2000 standard [14].
The resulting coefficients are then quantized to a fixed number of
bits and coefficients below a threshold are clamped to zero. Then,
the quantized coefficients and run lengths of zeros are encoded
using a Huffman code. The number of quantization bits and the
threshold are both used to increase the compression rate at the cost
of image quality.

5.2.2 Difference Columns
Consider an index columnCi and a difference columnCj . Be-

cause of the structure found in EPIs, we can assume that if the two
columns are nearby, they are very similar. Even more, we can as-
sume that a scaled and shifted version ofCi can be found that is
nearly identical toCj . In fact, if the scene being observed was
a flat surface, an identical match could be found. We denote the
scale factor asα, the offset asδ, and the transformed column as
W (Ci, α, δ), whereW is a linear warping function. We need to
search for the values forα andδ that best predictCj . Note that if
we enforce thatx∗i < x∗j we can limit the search by ensuring that
α > 1. This is because as the camera nears the scene objects, the
features move upwards or downwards in the EPI, just as objects in
an image get larger as a camera moves forward.

The encoding process starts by finding the index columnCi that
is closest toCj and that satisfiesx∗i < x∗j . A search is performed to
find theα andδ that minimize the error betweenW (Ci, α, δ) and
Cj . Any error metric may be used, however our prototype measures
the error by calculating the sum of the absolute difference between
the columns (i.e.,L1 norm).

The warped index column is then subtracted fromCj , and the

Figure 6: (a) The database before an insertion. It complies with
the encoding invariant. (b) The database after a new index column
has been inserted at position 4.5. Note that columns 5 and 6 are
now in violation of the invariant. (c) The system re-encodes all
columns between the new index column and the following index
column, Column 7. The database again complies with the encoding
invariant.

difference is transformed using the same1D wavelet used for in-
dex columns. Next, coefficients below a threshold are clamped to
zero. We call this threshold thezero-cutoff threshold. The remain-
ing non-zero coefficients are quantized to a fixed number of bits.
The quantized coefficients and zero run lengths are then encoded
using a Huffman code. Column metadata (α, δ, and a pointer to the
index column) is stored in a separate structure.

5.3 Encoding Invariant
Our encoding algorithm maintains an invariant that is enforced

after each change to the database. At all times, columns are stored
in a sorted order along theX∗ axis of the epipolar coordinate sys-
tem. The column with the leastx∗j value is always encoded as
an index column. Subsequent columns all refer to the same index
column until the next index column is reached. In order to sup-
port incremental updates to our representation, there is no fixed
distance between the index columns. Index columns are added as
needed as described in Section 5.4. Once a new index column
has been reached, all difference columns are encoded using the
new index column and none are encoded using any earlier index
columns. This preventsindex fragmentation(fragmentation of the
index/difference relationship) and limits search times during incre-
mental updates to the database (see Section 5.4). It also ensures
that nearby columns reference the same index column, reducing
the amount of work needed to decode the data. Figure 6 shows a
graphic illustration of the invariant.

5.4 Incremental Updates
The IRW representation is incrementally updated as new samples

become available. This is possible because the addition of a new
column requires changes to only a small neighborhood of samples.
When a column is added to the database, the first step is to compute
acandidate index column. The candidate is used to encode the new



column as a difference column. The system begins by finding the
closest column already in the database whosex∗j value is lower
than that of the new column. If this closest column is an index
column, it is used as the candidate. If it is a difference column, we
load its associated index column and use that as the candidate index
column.

A search is performed to find values forα andδ that best match
the new column with the candidate index column. The candidate
index column is then warped by the bestα andδ values and sub-
tracted from the new column. The difference data is transformed
by a wavelet and the coefficients are quantized to a fixed number
of bits. Low coefficients are rounded to zero. At this point, we per-
form an evaluation to determine whether the difference data is suf-
ficient to store in the database or whether the new column should
be saved as an index column. For our prototype implementation,
we performed this evaluation by counting the number of zero co-
efficients. If the number is above a threshold, the difference is en-
coded using a Huffman code and stored in the database along with
the newα andδ values.

If the number of zeros is below the threshold, the new column is
fully encoded as an index column. However, simply adding the new
index column violates the invariant presented in Section 5.3. To
reinforce the invariant, the system must alter all difference columns
encoded using the candidate index column whose position along
theX∗ axis is greater than that of the newly inserted index column.
Each of these columns must be re-encoded using the newly inserted
index column. Once these rows have been fixed, the invariant will
again be true.

Figure 6 illustrates this process. Part (a) shows the initial database
state. Note that the first column is an index column, along with
columns 7 and 11. The encoding invariant holds and there is no
index fragmentation. Part (b) shows the database after a new in-
dex column has been inserted at position 4.5. This insertion places
the difference columns 5 and 6 in violation of the invariant because
they are encoded using column 1. The algorithm must re-encode
all difference columns between the new index column (4.5) and
the following index column (7). Part (c) shows the database after
columns 5 and 6 have been re-encoded using the new index col-
umn. The index fragmentation has been repaired and the encoding
invariant is reinforced.

5.5 Independence from Reconstruction
The basic IRW representation is independent from the recon-

struction algorithm used by the target application. Any reconstruc-
tion algorithm from the appropriate sub-class of IBR applications
is compatible with IRW. For example, an application may simply
render the nearest sample or linearly interpolate between the two
nearest samples. More sophisticated algorithms, such as Plenoptic
Stitching [4], can also be used. Each of these algorithms begins
reconstruction by querying the IRW database for the appropriate
image samples. The reconstruction then proceeds independent of
the representation.

6. QUERYING THE COLUMN DATA
An important factor in the design of the IRW representation is

the need to support very fast queries. Many applications that could
take advantage of our representation are interactive and require fast
access to needed image data.

An application initiates a query for columnCj by providing the
epipolar coordinateP ∗j . As discussed in Section 5.1, the space is
discretized at a fixed resolution. We can therefore determine which
slice contains the desired column fromP ∗j in O(1) time. We then
load up the column metadata for all columns in the slice.

The column metadata is stored in sorted order and is loaded
into a Red-Black tree structure that allows the appropriate column
metadata to be found inO(logn) time wheren is the number of
columns in the slice. The metadata contains the exact location on
disk of the encoded image data. The data is read from the disk,
Huffman codes are decoded, and the inverse wavelet transform is
performed. If the metadata indicates that this is an index column,
the query is finished and the data is returned.

If the column is a difference column, then the metadata contains
thex∗j coordinate of the associated index column. Finding the in-
dex column entry requires another search through the slice meta-
data at a cost ofO(logn). The index column is read from disk,
decoded, and transformed with the inverse wavelet transformation.
The index data is then warped by theα and δ values associated
with the difference column. The warped index data is added to the
decoded difference column and the result is returned.

A query requires at most two columns to be decoded. If the
column is an index column, only one column must be decoded.
Otherwise, both the difference column and index column need to
be decoded.

To avoid the cost of decoding a long chain of columns, our repre-
sentation does not allow a column to depend on more than one other
column. For the same reason, our representation does not exploit
inter-EPI coherence. In order to take advantage of the similarity
between neighboring EPIs, the representation would be forced to
chain multiple columns together during the encoding process. We
sacrifice the potential compression benefits of inter-EPI coherence
to keep the number of computations required during the decoding
stage at a minimum.

7. RESULTS
We have applied IRW to two benchmark environments. The first

is a well-sampled synthetic model of a conference room. The room
is circular in nature with a ring of desks. There are additional
open areas at two ends of the room. The second environment is a
real world scene courtesy of Lucent Technologies. The images are
taken from inside a computer demonstration lab. The distribution
of samples in the real world space is relatively sparse. Cylindri-
cal panoramas captured from the two environments are shown in
Figure 7.

7.1 Compression
When tested on both of our benchmark environments, IRW yields

compression ratios similar to standard JPEG compression. A direct
comparison with JPEG for both environments is shown in Figure
8. Our representation also provides mechanisms for trading im-

Figure 7: Cylindrical panoramic images captured from the (a) syn-
thetic and (b) real scenes analyzed in this paper. The synthetic
model is a circular conference room. The real world panorama is
an image captured from a computer demonstration lab at Lucent
Technologies.



Real Scene Using JPEG
Quality 80 84 88 92 96 100

Size (KB) 11.5 13.9 17.2 21.6 34.0 63.7
PSNR 44.99 45.52 46.23 47.05 48.40 50.34

Real Scene Using IRW
Quality 7 6 5 4 3 2

Size (KB) 17.8 21.4 26.6 33.9 45.6 61.4
PSNR 37.29 38.05 39.05 40.10 41.18 43.15

Synthetic Scene Using JPEG
Quality 80 94 88 92 96 100
SIZE 12.9 14.8 17.5 21.6 31.8 56.0
PSNR 36.29 35.83 36.21 36.64 36.58 36.61

Synthetic Scene Using IRW
Quality 7 6 5 4 3 2

Size (KB) 45.5 50.0 52.2 54.2 57.6 84.2
PSNR 38.59 39.39 40.26 41.40 43.17 45.01

Figure 8: These tables compare the compression performance of
IRW with that of JPEG. The first table shows JPEG applied to an
EPI from a real scene. The second table shows IRW applied to the
very same EPI. The third and fourth tables make the same compar-
isons for a synthetic EPI. For the JPEG trials, quality is measured
using the JPEG quality value. For the IRW trials, quality is mea-
sured using the zero-cutoff threshold.

age quality for increased compression rates, analogous to the JPEG
quality value. One such mechanism is the zero-cutoff threshold. As
shown in Figure 9, increasing this threshold increases compression
at the expense of image quality as measured by peak signal-to-noise
ratio (PSNR).

Finer level control can be achieved by adjusting the quantization
resolution. Fewer bits per coefficient result in higher compression
rates. A final quality control that can be used is to clamp higher fre-
quency wavelet coefficients to zero. This allows a lower resolution
version of the column being encoded on disk, resulting in higher
compression rates.

7.2 Fast Queries
IRW requires at most two columns to be decoded for a single

query. This is less work than required by other methods. For exam-
ple, JPEG uses8×8 blocks of pixels to encode images. Therefore,
at least eight full columns must be decoded to retrieve a single col-
umn of image data. In practice, the costs with JPEG are higher
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Figure 9: The zero-cutoff threshold effects both compression size
and image quality. This plot shows that when the threshold is
raised, the peak signal-to-noise ratio is reduced.
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Figure 10: As more column samples are stored in the database, the
probability that a new sample must be stored as an index column
decreases.

than that because blocks are not individually addressable. Video
compression methods that use differential coding, such as MPEG,
have even worse query properties. To decode a single column from
an MPEG frame, all pixel blocks containing the column must be
decoded along with the blocks used for the differential coding.

Furthermore, many reconstruction algorithms combine samples
from multiple images. For JPEG-based representations, the full
query time needs to be spent for each sample taken from a unique
image. For MPEG, the full query time can only be reduced if the
unique images are differentially encoded using a common reference
image. However, the IRW representation stores images in EPIs
which group columns that observe the same scene objects. Two
columns that are neighbors in an EPI can be retrieved by decoding
at most three columns.

7.3 Scalability
The IRW representation scales well as the data set grows. When

slices are poorly sampled, more columns tend to be encoded as in-
dex columns. This results in a substantial storage cost per column.
However, as the sampling density increases, a larger percentage of
columns are encoded as difference columns, reducing the marginal
cost per column. Figure 10 shows the probability that a column is
encoded as an index column as a function of the number of columns
present in a slice.

Over a number of experiments, we found that the storage cost
of an index column is on average 10.9 times greater than the cost
of a difference column. This ratio depends on the encoding quality
parameters. While the cost of an index column remains relatively
constant, the cost of a difference column decreases as the quality
decreases.

As shown in Figure 10, when new columns are added, there is a
lower probability that they will be encoded as index columns. The
result of this trend is a sub-linear growth rate for the IRW repre-
sentation. The results of an experiment showing this behavior on
synthetic images are shown in Figure 11.

7.4 Incremental Updates
As stated in the previous section, sub-linear growth implies that

as more columns are added, an increasing percentage of them are
encoded as difference columns. This has significant implications
regarding incremental updates to the IRW representation. As stated
in Section 5.4, adding difference columns requires relatively lit-
tle work. None of the existing structure needs to be altered ex-
cept for the sorted list of slice metadata. The encoded image data
is unchanged. Additional work is performed to reinforce the en-
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Figure 11: The IRW representation exhibits sub-linear growth. As
additional columns are added to the database, the marginal storage
cost decreases. The data shown here was computed from images of
the synthetic scene.

coding invariant only when new index columns are added. This
means that the cost of adding new columns to the representation
decreases as the representation gets larger. As more columns are
added to the representation, adding an additional column becomes
easier and easier. Furthermore, because of the encoding invariant,
any changes that may be needed are local in scope and only effect
data located between the new index column and the index column
that follows.

However, there is a price to pay for the incremental nature of
IRW. The encoding invariant implies that the order of insertion im-
pacts the compression rate. For example, in the worst case where
columns are added in order of decreasingX∗ values, every column
is encoded as an index column. The best case occurs when the
columns are added in increasingX∗ order. Adding columns in ran-
dom order increases the storage cost by an average of44.8% over
the best case storage size. This cost can be limited by occasionally
re-packing a slice by re-encoding it in sorted order.

7.5 Overhead Costs
In addition to the image data, IRW stores indexing and metadata

for each column. We have a storage overhead of 14 bytes per col-
umn. For a typical compressed image size (256 columns) of about
60KB, the overhead for this data is about 3.5KB, or5.8%. We
note however that this overhead is not unique to our representation.
Any other method must store extra information to augment the raw
image data such as camera pose estimation.

7.6 Selective Inclusion
One of the design goals for IRW is selective inclusion. The

performance of this feature depends upon the reconstruction algo-
rithm’s ability to use existing samples to predict the new sample
under consideration. In general, a poor reconstruction algorithm
requires a large number of samples while a better reconstruction
algorithm can produce a reconstruction of equal quality with fewer
samples in the database. IRW is flexible and can work with any
reconstruction method, but the degree to which individual samples
can be omitted from the database depends on which algorithm is
used.

For our experiments, we used an extremely simple reconstruc-
tion algorithm: comparing a new sample with the nearest neigh-
bor already in the database. We then subtracted the two columns
and if the difference was small enough, we discarded the new col-
umn. Figure 12 shows that the probability of including a column
decreases as the size of the database grows. The exact probability
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Figure 12: The table shows the probability of a row being included
for three different error tolerances. (a) shows the behavior for a
low error tolerance while (c) shows a high error tolerance. The
tolerance for (b) is in the middle. While the drop in probability is
directly related to the allowed error, the general shape is the same
for all three trials.
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Figure 13: The compression ratio is plotted as a function of the
number of rows added to the representation for the same three er-
ror tolerances shown in Figure 12. The three trials are labeled with
the same letters for comparison. A higher error tolerance results in
higher compression rates. Even at low error tolerances, the com-
pression rate steadily increases as columns are added.

depends heavily on both the reconstruction performance and the
acceptable error, but the general trend should hold for most recon-
struction algorithms.

Selective inclusion includes columns where the scene is hard
to reconstruct, but rejects columns where the reconstruction algo-
rithm already has enough samples. The ability to discard columns
that don’t improve reconstruction quality allows us to greatly im-
prove our compression rate. Figure 13 shows the compression rate
as columns are sent to the database for inclusion. The rate in-
creases as columns are processed because an increasing percentage
of columns can be rejected.

In the limit, the database will reach the point where the scene is
adequately sampled in all dimensions. At this point, all additional
columns can be safely rejected. This implies that there is some
point at which the database can recognize that it has been sampled
at the rate needed by a given reconstruction algorithm to reconstruct
the entire scene within a given error tolerance.

8. CONCLUSIONS AND FUTURE WORK
We have presented an image database representation for a sub-

class of IBR applications that use images taken from an environ-



ment such that all camera positions lie upon a plane that is orthog-
onal to the camera’s image plane. We exploit camera pose infor-
mation associated with each image, allowing us to reorganize the
image data into highly coherent epipolar plane images.

The IRW representation provides fine grained access to image
data by supporting queries for individual columns of data. IRW
also supports selective inclusion which allows us to include only
useful portions of a given image in our representation. In addition,
the IRW representation is incremental and allows new samples to
be easily and efficiently integrated with an existing dataset.

Along with these novel features, IRW yields compression rates
similar to JPEG and provides controls over the encoding process
that trades compression rates for image quality.

As part of future work, we plan to integrate existing reconstruc-
tion algorithms with our representation as well as explore new meth-
ods of reconstruction from image-based datasets.

There is also a need for further exploration of the behavior of the
IRW representation in the limit as the number of samples grows.
We expect that this property can be used to help address the next-
best-view problem with regards to the automatic capture of an un-
known scene [35]. Slices that suffer from poor compression ratios
are in need of additional samples. Conversely, highly compressed
slices are sampled well enough for the environment’s complexity.

There are also many short-term improvements to be made. Por-
tions of our prototype can be optimized for both speed and com-
pression. We also plan to encode a real-world dataset with more
uniform spatial properties than the dataset analyzed in this paper.
Finally, we would like to extend the IRW representation to sup-
port application-level requirements of various reconstruction algo-
rithms, such as image feature correspondences.
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