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A framework to improve causal
inferences from visualizations
using counterfactual operators

Arran Zeyu Wang1 , David Borland2 and David Gotz3

Abstract
Exploratory data analysis of high-dimensional datasets is a crucial task for which visual analytics can be
especially useful. However, the ad hoc nature of exploratory analysis can also lead users to draw incorrect
causal inferences. Previous studies have demonstrated this risk and shown that integrating counterfactual
concepts within visual analytics systems can improve users’ understanding of visualized data. However, effec-
tively leveraging counterfactual concepts can be challenging, with only bespoke implementations found in
prior work. Moreover, it can require expertise in both counterfactual subset analysis and visualization to
implement the functionalities practically. This paper aims to help address these challenges in two ways.
First, we propose an operator-based conceptual model for the use of counterfactuals that is informed by prior
work in visualization research. Second, we contribute the Co-op library, an open and extensible reference
implementation of this model that can support the integration of counterfactual-based subset computation
with visualization systems. To evaluate the effectiveness and generalizability of Co-op, the library was used to
construct two different visual analytics systems each supporting a distinct user workflow. In addition, expert
interviews were conducted with professional visual analytics researchers and engineers to gain more insights
regarding how Co-op could be leveraged. Finally, informed in part by these evaluation results, we distil a set
of key design implications for effectively leveraging counterfactuals in future visualization systems.
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Introduction

Visual analytics systems have had a significant impact

across numerous application domains, ranging from

healthcare1 to event sequence analysis2 to decision-

making.3 Building on the rich history of visualization

and exploratory data analysis,4,5 a primary goal of

many visual analytics systems is the exploration of data

to facilitate pattern discovery and generate new

insights. Such systems aim to enable users to quickly

generate new views of data and to explore the relation-

ships between variables in ad hoc ways. This can result

in many different visualizations of various data sub-

sets, each quickly created as part of the exploratory

analysis process.6–8 Users view these visual depictions

in an attempt to identify and interpret meaningful

signals within the data. This last step can be challen-

ging, however, as it can be difficult to distinguish

between visual patterns that are consequential for a
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given task from those that might result only from noise

or spurious correlations.

This challenge becomes even more difficult with

the increasing complexity of large-scale datasets and

visual designs which can make it even more difficult

for users to properly comprehend and interpret the

views created within visualizations and visual analytics

systems.9–11 Substantial efforts from visualization

researchers have thus been made to find new

approaches that can aid people in better understand-

ing data and avoiding false findings.12,13 These efforts

include research that has studied how people draw

potentially unsupported causal conclusions about

visualized data relationships, along with proposed

methods to mitigate this effect.2,14 Despite these

efforts, however, the creation of visualization tools that

can support the reliable identification of causal rela-

tionships remains a significant and critical challenge.15

This challenge is closely related to the topic of cau-

sal inference as studied within the statistics commu-

nity. One core theory in this area of statistics is

counterfactual reasoning,16 an approach to thinking

about causation from the perspective of considering

hypothetical scenarios (i.e. counterfactual scenarios)

in which alternative conditions that differ from an

original observation were to have occurred. For exam-

ple, an analysis of data related to students’ academic

performance without adequate sleep might consider

the counterfactual scenario in which similar students

had in fact slept the fully recommended amount of

time. This approach provides the conceptual basis for

analysts to reason about causal relationships between

factors by isolating and examining ‘‘what-if’’ condi-

tions for specific variables.

Counterfactual approaches have been more broadly

adopted beyond the statistics community in recent

years as data-driven applications have become more

ubiquitous. One such domain is the burgeoning

machine learning community, which has demon-

strated several useful applications of counterfactual

concepts including model fairness17 and evaluations.18

Within the visualization community, recent studies

have assessed the impact of visualization on the quality

of causal inferences14,19 and shown that integrating

counterfactuals with visualizations and visual analytics

systems can improve users’ understanding of causal

relationships and overall data interpretation.6,20–22

These approaches have shown great promise in studies

of users’ analytical behavior. However, they have

depended upon bespoke implementations and proof-

of-concept prototypes that make wider adoption of

these techniques more difficult.23 Specifically, adopt-

ing counterfactual techniques is reliant on developers

to design the data model, workflows, and algorithmic

modules required to integrate these concepts within

an exploratory visualization environment.23

Motivated by lessons learned from prior studies of

counterfactual visualizations such as CoFact,6 this paper

derives a set of general design motivations and introduces

a formal model of counterfactual operators. This model is

designed to provide a deeper conceptual foundation for

the use of counterfactual reasoning via subset computa-

tions within the context of visualization and visual analy-

tics. At the core of this approach is a data subset-based

mathematical computation model and a classification of

counterfactual operators that reflect a range of key con-

cepts important to the use of counterfactuals within

visualization systems.6,22 These operators transform or

derive values from the underlying sets in various ways

which, when used in combination, can support a range

of counterfactual-based visualization workflows. This

generalized approach to a counterfactual-based subset

computation model can be leveraged by a range of

visualization designs even beyond those from the prior

work that informed its design.

As an instantiation of the proposed model, this

paper also presents the Co-op library. Co-op imple-

ments the core counterfactual operators and corre-

sponding set-based data structures proposed in our

model. This library enables accelerated development

of new counterfactual-based visualizations, and pro-

vides an extensible framework via which developers

can apply and extend the core set of operators intro-

duced in this paper. With Co-op, developers can easily

design and implement visualizations integrating coun-

terfactual subsets.

The effectiveness and versatility of Co-op is demon-

strated through the development of two visualization

systems, along with expert interviews. The first system

is a re-implementation of the CoFact system6 created

using Co-op operators in place of the system’s original

computational methods. This workflow of CoFact,

however, only uses a portion of the capabilities offered

by the Co-op library. A second novel exploratory visual

analysis system, CoExplorer, was created by utilizing a

wider range of Co-op’s functionality to facilitate a new

exploratory workflow incorporating counterfactual

visualization that has not been reported in prior work.

Further, we conducted an interview with six visual

analytics researchers and professional engineers. They

provided valuable feedback on the design goals, Co-op

model, as well as potential benefits and drawbacks of

practical aspects of the library.

Together, these two systems—developed with the

same Co-op library at their core—and the expert inter-

view help demonstrate the versatility of the counterfac-

tual operator model. They also showcase the utility of

the Co-op library itself as a tool for creating a diverse
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range of counterfactual visualizations that provide a

variety of interactive functions and support various

data types.

Finally, this paper offers general guidance on the

effective usage of Co-op. This guidance distils key

design implications that can aid researchers and

practitioners in the visualization community in devel-

oping improved counterfactual-based visual analytics

systems.

Related work

The counterfactual operators model introduced in this

paper builds on prior research developed in several

areas of related work. This includes foundational work

that has developed the theory of counterfactual rea-

soning to support causal inference, causal inference

visualizations, and how mathematical models can con-

tribute to visualization.

Counterfactuals in causal inference

Causal inference techniques aim to support the

understanding of relationships of cause and effect

between factors in a system. Pearl16 established a

three-level causal inference hierarchy that describes

progressively more powerful – and more difficult to

attain – levels of understanding: association, inter-

vention, and counterfactual.

Within this hierarchy each level builds upon the pre-

vious, with counterfactuals (providing the highest level

of evidence for causation) as the apex. Counterfactuals

enable the exploration of ‘‘what if’’ scenarios given

changes to variables, and reasoning about ‘‘why’’

changes in the expected outcomes occur in response.

In this way, counterfactuals offer a window to imagine

hypothetical situations that did not necessarily occur in

reality.

Take, for instance, a students poor performance on

assessments after a sleepless night. A counterfactual

analysis might probe scenarios where the student had

adequate sleep, helping examine if lack of sleep is

indeed a causal factor in poor assessment performance.

There are many methods for estimating and comput-

ing counterfactuals in causal modeling such as instru-

mental variables,24 machine learning approaches,25

and matching methods.26–28 For a more comprehen-

sive overview of counterfactual-based causal inference,

we refer the reader to Glymour et al.29

Counterfactual analyses, through the identification

and/or simulation of unobserved scenarios, enhance

our exploration of how certain factors may influence

outcomes, enabling the examination of possible causal

links, including those that were not directly observed

within the data.

Visualization for causal inference

Understanding causal relations from complex data has

long been an important goal for the visual analysis

community.30 Counterfactuals are emerging as a pro-

mising approach toward achieving this analytical

need.23

Past efforts have often centered around the use of

graphical causal models, for example, domain

knowledge-enhanced visual exploration,31,32 algorithm

interpretation,33 and DAG-based causal representa-

tion.34 Visualizations using graphical models have been

designed for specific application scenarios, such as

supporting decision-making workflows,35 urban time

series exploration,36 and event sequence analysis.2

Most relevant, Kaul et al.6 introduced CoFact, the

first use of counterfactuals in the context of general-

purpose exploratory visual analysis scenarios with

high-dimensional datasets. It includes a filter-con-

straint-based counterfactual computation method to

dynamically create ad hoc comparator groups for

improved user inference of causal relationships. Wang

et al.22 explored the use of counterfactuals in static

visualizations and found that it helped users better

infer relationships in datasets. These studies demon-

strate the utility of visualizing counterfactuals, but have

limited flexibility to extend beyond their proposed

application scenarios and make no attempt to define a

more generalizable framework that could enable the

broader adoption of this type of approach.23

Inspired by these early steps, this paper proposes a

formal operator-based model that provides a general-

ized approach to counterfactual computations that can

support a unified approach to a wide range of visual

analysis system designs.

Mathematical computation models in
visualization

Mathematical computation models play a crucial role

in enhancing the understanding and effectiveness of

visualizations.37 Widely-employed mathematical mod-

els in visualizations including discrete mathematics,

such as network centrality measures38,39 and graph-

theoretic measures,40,41 and statistical methods, such

as dimensionality reduction42,43 and Bayesian model-

ing.44,45 Further, mathematical models have been

applied to describe general visualization frameworks.

For example, concepts and measurements from infor-

mation theory such as entropy can be employed to

qualify visual information46 algebraic mathematical

structures can help characterize data and encodings in

visualization design,47 and visualization tasks can be

generalized into computational operations and pipe-

lines.48 By leveraging mathematical concepts, these
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models provide generalizable approaches based on

theoretical foundations that can offer easier computa-

tion of data characteristics and enable more effective

representations in visualizations. In a similar manner,

our operator-based conceptual model and reference

implementation are designed to enable more efficient

and effective counterfactual-based visualization.

Counterfactual subset

The basic process of counterfactual-based analysis is

built upon a foundation of sets, set manipulation, and

set comparison. This section introduces core set-

related concepts and essential terminology that form

the basis for the design of the Co-op model described

later in this paper.

Data subset selection

In high-dimensional datasets, processing or visualizing

the entire dataset can be challenging, and generating

data subsets becomes crucial to provide users with at-

a-glance information.49 Similarly, data subset selection

methods are widely employed in various machine

learning tasks, including enhancing model robust-

ness50 and reducing the size of training data.51

Meanwhile, in exploratory data analysis, analysts often

manually create subsets by filtering data based on spe-

cific drill-down choices.52 For instance, assuming a

user chooses a constraint such as brand = Ford in a car

model dataset, a subset can be created and visualized

by filtering all data points that correspond to Ford

cars.

As the usage scenarios above highlight, the subset

selection process is typically used to identify a smaller,

more focused, subset of data from a larger data collec-

tion. The selection criteria for this process are often

referred to as inclusion criteria, and we refer to the

resulting subset (the data points that fit the inclusion

criteria) as the included subset, SINCL.

Critically, the selection process implicitly creates a

second complementary subset that contains the

remaining data points: the portion of the dataset that

did not meet the inclusion criteria. We refer to this as

the excluded subset, SEXCL. For instance, using the

brand = Ford example from earlier in this section, the

excluded subset would include all non-Ford vehicles.

Mathematically, SINCL can be defined as follows:

SINCL = x 2 SALLjF(x)f g, ð1Þ

where SALL is the complete dataset, x represents the

individual data points, and F(x) denotes the filtering of

data to enforce the inclusion criteria. Similarly, SEXCL

can be defined as follows:

SEXCL ¼ x 2 SALLjx 62 SINCLf g: ð2Þ

Throughout a user’s exploratory analysis session,

the values for SINCL and SEXCL evolve through changes

to the filter function F(x) that reflect the user’s

dynamic analytic focus.

Counterfactual subset filtering

In many visual analytics systems, data from SINCL is

visualized in isolation to enable users to focus their

analysis on a specific subset of their choice. This is

reflected in the zoom and filter step of the oft-cited

visualization mantra ‘‘Overview first, zoom and filter,

then details-on-demand.’’53 In other systems, SINCL can

be visualized together with data from SEXCL to facilitate

comparison between the two subsets.

In exploratory analysis settings, the subset SINCL will

change interactively in response to a user’s changes in

analysis focus. Traditionally, these changes would be

driven in response to a user’s explicit requests. More

recently, a number of semi-automated approaches

have also been proposed to help users more effectively

explore complex datasets and find more meaningful

insights. These include, for example, contextualizing

selection bias54–57 and aggregating data subsets.58–60

For both manual exploration and semi-automated

approaches, the choices for SINCL and the comparisons

with SEXCL that inform a user’s insights are often based

on correlations between variables that are either

visually presented or algorithmically computed.

Relying on correlations, however, can result in mis-

leading representations and incorrect causal inferences

on the part of the user.16 Hence the well-known axiom

that correlation does not imply causation.

Counterfactuals can provide a mechanism for more

effectively contextualizing the correlations discovered

in traditional exploratory analysis. As demonstrated in

earlier work, comparing the data from SINCL with a

subset of data points from SEXCL that are similar to the

point in SINCL across all dimensions other than the

constraints can lead to more accurate user judgments

of causal relationships.6 These similar data points

from SEXCL serve as a counterfactual subset SCF for

SINCL, providing more information about potential

causal relationships in the data. One challenge for this

approach is identifying an appropriate subset of data

points to place within SCF .

Mathematically, SCF is defined as follows:

SCF = x 2 SEXCLjSimilar(x, SINCL)f g, ð3Þ

where Similar (x, SINCL)denotes the computational

process of determining if x is one of the most similar

data points in SEXCL to SINCL.
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We note that this definition partitions SEXCL into two

subsets: (a) SCF , and (b) the remainder of the excluded

subset that is not part of the counterfactual subset. We

refer to this remainder as SREM which we define mathe-

matically as follows:

SREM = SEXCL � SCF ð4Þ

The relationships between SALL, SINCL, SEXCL, SCF,

and SREM are illustrated in Figure 1.

This definition of SCF sidesteps a critical question:

What is meant by similarity and how do we define the

Similar function? A wide variety of similarity metrics

have been proposed in the literature. For example,

Cofact6 employed a simple Euclidean distance measure

as the similarity metric for subset computation.

However, in many real-world applications such a sim-

plistic approach is often insufficient. The demands of

different analytical goals vary widely,60,61 which may

necessitate a variety of similarity computation methods.

Moreover, similarity is context-dependent. Consider a

health example focused on the similarity between two

patients. The two patients may be more similar with

respect to cardiac questions but less similar with

respect to dermatological questions. These considera-

tions mean that calculations of similarity are necessarily

application and context specific.

In this paper, instead of making a fool-hardy

attempt to explicitly solve this problem by introducing

‘‘the right metric’’ for all cases, we define similarity

flexibly based on an extensible set of measures that

can describe the relations between data points and

subsets. These can then be used individually or in

combination to express more sophisticated concepts of

similarity as appropriate for specific scenarios.

Design motivation

To highlight the various ways in which visualization

developers can leverage counterfactual reasoning, we

introduce a series of usage scenarios and discuss the

key design considerations that those scenarios raise.

We then outline a set of design goals for our work

based on those considerations.

Usage scenarios

To help illustrate the wide variety of ways in which

counterfactuals can be useful within the context of

visualization, we describe four different usage scenar-

ios. For each scenario, a number of key design consid-

erations drawn from previous work are highlighted in

bold.

Algorithm Explanation with Visual Analytic Effective

graphical inference is an important consideration for

the design of explanatory visualizations as it is crucial

that such systems help users draw valid conclusions

from their data exploration and analytical focus.10,62

In model explanation, which is the most widely applied

counterfactual usage scenario for model developers,

counterfactuals have been incorporated with visual

analytics systems to provide improved graphical infer-

ence.20,21,63,64 These analytic systems leverage coun-

terfactuals to provide intuitive explanations for model

decisions by creating synthetic or modified data points

that demonstrate how small alterations in input fea-

tures affect a model’s predictions, enabling users to

better understand the inner workings of machine

learning models, including which features had the

most influence on a specific prediction.63 Therefore,

such applications require counterfactual computation

to exhibiting the following: (i) Interpretability and

Transparency – mechanisms for clear and intuitive

explanations of model decisions and behaviors using

counterfactuals, (ii) Integration with Visualization

Tools – APIs or frameworks that enable seamless inte-

gration of counterfactual computations with existing

visual analytic systems, and (iii) Performance and

Scalability– efficient computation of counterfactuals,

Figure 1. The subsets SINCL, SEXCL, SCF , and SREM are derived from SALL as illustrated in this figure. (a) SALL contains all data.
Applying a filter creates (b) the included subset SINCL and a corresponding excluded subset SEXCL. Selecting
counterfactuals from the excluded set divides SEXCL into (c) the counterfactual subset SCF (closest to SINCL) and the
remaining excluded data points SREM.
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ensuring responsiveness even with large and complex

models.

Visual Data Splitting and Cleaning For developers,

data splitting and cleaning are crucial in evaluating

and improving the performance of machine learning

and statistics models.65 Moreover, previous research

has found that visualization can provide benefits dur-

ing this process.66 This task requires examining the

entirety of, random portions of, or specific data sam-

ples from a dataset, and selecting points of interest

(i.e. the SINCL subset) through explicit criteria.67

Under this scenario, counterfactual computation

should exhibit: (i) Flexible and Accurate Subset

Identification – accurate and efficient operators to

filter and compute counterfactual subsets based on

different user interests, such as missing values, out-

liers, or feature quality, (ii) Subset Comparisons –

enable comparison of distributions and statistics

between the SINCL and SCF subsets based on various

criteria such as data integrity, anomalies, and feature

quality, and (iii) Subset Modification– enable users

to create, modify, and combine different data subsets

for more fine-grained splitting and cleaning.

Guided Exploratory Data Analysis Existing studies

suggest that counterfactual information can help peo-

ple reason about data within visual analytics sys-

tems.6,20,21 However, relatively little work has focused

on the use of counterfactuals as the basis for offering

guidance to users performing exploratory data analy-

sis. For example, counterfactual information could

serve as an artificial agent3 to inform users’ exploration

strategy and help support decision-making. By provid-

ing a unified framework for generating counterfactual

scenarios, a counterfactual computation model could

reduce the development requirements in such systems.

It would also help developers easily integrate counter-

factual reasoning into their existing visualization sys-

tems without requiring extensive domain knowledge.

Specifically, the system should be able to support (i)

Exploratory Workflows – enable the creation of a

complete pipeline to direct analysts in exploratory data

analysis, from data selection to counterfactual visuali-

zation, for generating and managing counterfactual

scenarios, (ii) User-Friendly Explorations – utilize

counterfactual information incorporating various dif-

ferent measures to help explain current exploration

results to users in refining their exploration strategies

and support more informed decision-making, and (iii)

Domain-Neutral Applications – enable analysts to

apply counterfactuals across various visualization sys-

tems and domains without extensive domain-specific

knowledge.

Visualization Recommendation Counterfactuals have

been used within NLP algorithms18 and recommender

systems,68 to improve explainability and model

performance. However, existing visualization recom-

mendation algorithms, have given limited attention to

the counterfactual approach. For example, prior

research has employed existing design theories,69

behavioral models,70 or content-based insights71 as

the basis for recommendations. Counterfactuals could

be useful to help find causal relations between differ-

ent data variables,6,16 and therefore visualizations

revealing these relations. A counterfactual computa-

tion model could lower the barrier for using

counterfactuals within such visualization recommen-

dation systems, and should support: (i) Diverse

Recommendation Space – provide visualizations to

expand the potential recommendation space, (ii)

Seamless Integration – enable existing visualization

recommendation toolkits to incorporate counterfac-

tual computation with little effort, and (iii) User-

Driven Recommendations – enable analysts to

influence the generation of visualization recommenda-

tions based on specific measurements or preferences.

Design goals

Based in part on the considerations introduced in the

above usage scenarios, we derived a set of practical

design goals to help shape the design of the operator-

based counterfactual model presented in The Co-op

Model. These include efficiency, transparency, com-

prehensibility, flexibility, and compatibility.

At the same time, the motivation to follow an

operator-based approach in the first place is informed

by previous studies47,48,72 which demonstrate the ben-

efits of mathematical and algebraic frameworks for

efficiently representing complex and diverse concepts

in a formal way that can be translated to practical

implementations for developers. The operator-based

model that we propose provides a unified way of repre-

senting a diverse set of operators and measures that

can support core design considerations such as Subset

Modification and Exploratory Workflows.

Efficiency: The proposed model should be scalable

and efficient to handle large and complex datasets.73 It

supports the consideration of Performance and

Scalability and Flexible and Accurate Subset

Identification.

Transparency: The proposed model should be trans-

parent and explainable to show the processes of

underlying mechanisms,74 that is, how counterfactual

subsets are generated and why they are relevant or

interesting. It is crucial to enable Interpretability and

Transparency and User-Friendly Explorations.

Comprehensibility: The proposed model should be

easy to understand and use by developers with

different levels of expertise and background knowl-

edge.75 Good comprehensibility can benefit building
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Domain-Neutral Applications and reduce the

knowledge requirement to guide User-Driven

Recommendations.

Flexibility: The proposed model should be general-

izable and flexible enough to handle different types of

data and visualization tasks.76 High flexibility could be

able to support Subset Comparisons and Diverse

Recommendation Space.

Compatibility: The proposed model should be com-

patible and interoperable with existing visualization

tools and frameworks.77 This is necessary for

Integration with Visualization Tools for visual ana-

lytics systems and Seamless Integration for visuali-

zation recommendations.

The Co-op model

This section introduces Co-op, an operator-based

model for counterfactuals that is designed for explora-

tory visual analytics workflows. Building upon the set-

based concepts introduced in the previous section, Co-

op formalizes the computational model for counterfac-

tuals using two broad categories of algorithmic build-

ing blocks: measures and operators. Within the Co-op

model, operators represent logical units that take one

or more sets as input and return one or more sets as

output. Measures, in contrast, represent functions

which map input data points and/or sets to a scalar

value. For some operators, measures can be provided

as additional inputs to control how the operator per-

forms. The model described in this section provides a

formal framework for the general-purpose counterfac-

tual software library described in Co-op as A Library.

Table 1 summarizes all symbols and notations.

Measures

As described in sec-subsets, the identification of the

counterfactual subset SCF requires the identification of

the data points in SEXCL that are most similar to SINCL.

This process can involve a variety of different calcula-

tions which derive scalar values from different forms

of data. These quantities can be used for different pur-

poses such as similarity assessment (e.g. ‘‘how similar

is a data point to a given set’’), thresholding (e.g.

‘‘which data points are considered most similar’’), qual-

ity assessment (e.g. ‘‘how similar is one subset to

another’’), and more. Specifically, in this model, the

similarity is computed by calculating or accumulating

the distance between different combinations of points

and sets, for example, equations (5) and (7).

The Co-op model supports these types of calcula-

tions with measures. At its most generic, a measure is a

function of some input that resolves to a scalar value.

Different types of measures can be used to quantify

various properties of the input data, and measures can

be broadly classified based on the types of input to

which they can be applied. Co-op specifies four cate-

gories of measures including point-to-point, point-to-

subset, subset-to-subset, and intra-subset. This section

defines these measurement classes and provides exam-

ples of common measures in each category.

Point-to-Point Measures Point-to-point (P2P) mea-

sures describe relations between two individual data

points. In this way, P2P measures represent the finest

granularity of measurement in the Co-op model. Two

specific variants of P2P measures are included in the

model: point distance and weighted point distance.

Point distance: Similarity assessments are often

framed as a distance calculation between pairs of

points. Reflecting this basic framing of data similarity,

the first P2P measure in Co-op is a point distance mea-

sure, noted as pd. This measure evaluates the distance

Table 1. A summary of the notation used throughout this
paper.

Symbol Definition

SALL The overall dataset
SINCL The included subset
SEXCL The excluded subset
SCF The counterfactual subset
SREM The remaining subset
S, Si An arbitrary set of data points
x, p, q Individual data points
pd(� � �) A point-distance P2P measure
pdw(� � �) A weighted point-distance P2P

measure
pdavg(� � �) An average-distance P2S measure
pdwavg(� � �) A weighted average-distance P2S

measure
sd(� � �) A subset-distance S2S measure
sdw(� � �) A weighted subset-distance S2S

measure
sdent(� � �) An entropy-based S2S measure
sdwent(� � �) A weighted entropy-based S2S

measure
variance(� � �) An intra-subset variance measure
variancew(� � �) A weighted intra-subset variance

measure
entropy(� � �) An intra-subset entropy measure
entropyw(� � �) A weighted intra-subset entropy

measure
Md A distance function, for example,

euclidean or hamming
weights A weight vector for specifying variable

importance
Filter(� � �) Filter operator
GroupBy(� � �) GroupBy operator
Counterfactual(� � �) Counterfactual operator
Resize(� � �) Resize operator
C, Dim Filter constraints, a data dimension
Measures Vector of measures for similarity for

use within a counterfactual operator
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between two data points p and q using a given distance

function Md as follows:

pd(p, q,Md)=Md(p, q),
Md 2 custom, euclidean, hamming, . . .f g ð5Þ

This basic pd measure is made flexible and extensi-

ble by abstracting the distance function Md from the

overall measure. The generic pd can be used to note

the distance calculation as part of larger expressions

that use the model’s notation independent of the

underlying details of the specific distance function Md,

which instead would be provided to pd as an addi-

tional parameter. Md could be any pointwise distance

formulation.

For example, the reference software implementation

of the Co-op model is described in as A Library. In that

Co-op software library, the default for Md is the com-

monly used Euclidean distance.78 Beyond that default,

the Co-op library provides an extensive list of other dis-

tance metrics reflecting those supported by the Scipy

Python library.79 This includes other well-known dis-

tances such as the Hamming distance80 and the

Mahalanobis distance.81 For applications that require

it, developers can extend beyond these pre-defined

options by implementing a custom Md function.

In the Co-op library, pd is the default P2P similarity

measure in Co-op, and Euclidean distance is the default

option for Md.

Weighted point distance: In many real-world usage

scenarios, the impact and significance of different

dimensions and variables can vary widely.61 Moreover,

this variance can occur by application, analysis task/

topic, or time.

For example, in a survey dataset about a large pop-

ulation of people, an analysis of financial status would

likely place more importance on variables related to

income when compared to variables about weight or

height. In such a scenario, measurements of similarity

would want to give more weight to financial variables

when determining which people can serve as counter-

factual examples. An analysis of health outcomes from

the same data, however, would likely result in a very

different notion of what it means to be similar.

Reflecting this notion of relative importance

assigned to individual variables, the Weighted Point

Distance pdw measure provides an alternative to the

default pd. This P2P variant incorporates the concept

of a per-variable weight which can be used to shape

the underlying distance function’s calculations. More

specifically, we define the weighted distance measure

pdw p, q,weights,Mdð Þ which the same arguments as pd

with an additional weight vector weights. As imple-

mented in the Co-op library, this measure enables

developers to customize the importance of different

data variables based on weight calculated using their

own bespoke application-specific logic.

Point-to-Subset Measures Point-to-Subset (P2S)

measures describe relations between a single data point

x and a set S. This type of measure can, for example,

provide an overall assessment of how similar x is to the

members of S. We note that this formulation is equally

applicable for both x 2 S and x 62 S. Therefore, a P2S

measure can provide data to help guide decisions such

as ‘‘should x be added to set S’’ as well as ‘‘should x be

removed from set S’’.

The overall assessment can utilize a variety of aggre-

gation functions such as maximum, minimum, or aver-

age. Reflecting the most common usage scenario in

the counterfactual workflow, measures defined below

introduce two variants based on an average distance

calculation.

Average distance: We extend the definition of point

distance (see equation (5)) to fit the point-to-subset

relation. The average distance pdavg is computed as the

mean of all pairs of point distances from the target

point p to each point in the target subset S:

pdavg x, S,Mdð Þ= 1

jSj
X
i2S

pd x, i,Mdð Þ: ð6Þ

Weighted average distance: Similarly, the weighted

average distance pdwavg is an extension of the point-to-

point pdw measure based on the mean of all point-to-

point distances from the target point x to each point in

the target subset S. As in the P2P case, this weighted

P2S measure enables differentiation in the importance

given to individual variables in the distance

calculation.

Subset-to-Subset Measure Subset-to-Subset (S2S)

measures describe relations between two sets of data

points. For example, this type of measure can capture

the overall similarity between two subsets of data (e.g.

SINCL and SCF as described in Counterfactual subsets).

Reflecting common use cases in counterfactual-based

workflows, three different S2S measures are defined

below.

Subset distance: The most basic S2S measure, subset

distance, is an extension of the original point distance

measure defined in equation (5). For two data subset

S1 and S2, the subset distance sd can be expressed as:

sd S1, S2,Mdð Þ= 1

jS1jjS2j
X
i2S1

X
j2S2

pd i, j,Mdð Þ: ð7Þ

Connecting this formulation with prior work, this

measure is mathematically equivalent to the set simi-

larity measure adopted in the CoFact system6 except

for the normalization factor which makes the distance

comparable across subsets of different sizes.
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Entropy-based similarity: An alternative S2S similar-

ity measure builds on the information theory concept

of entropy, commonly used in many machine learning

and statistical applications. Following the canonical

entropy formulation proposed by Shannon,82 we first

define the entropy of a given subset S as follows:

entropy(S)= �
XN

i= 1

P(xi) � log(P(xi)), ð8Þ

where P(x) is the probability of x given the distribu-

tion of subset S. Adopting this definition of entropy,

we employ the KullbackLeibler divergence83 as the

default entropy-based S2S similarity metric sdentropy,

which computes the differences in the entropy of two

subsets’ probability distributions:

sdent(S1, S2)=
XN

i= 1

P1(xi) � log(P1(xi)ð Þ � log(P2(xi))),

ð9Þ

where Pi(x) is the probability distribution of subset Si.

Weighted subset-to-subset similarity: As in the P2P and

P2S measures, weighted versions of these measures

enable the assignment of importance to different vari-

ables based on the application context. This leads to a

weighted subset distance measure sdw, and a weighted

entropy-based similarity measure sdwent.

Intra-Subset Measure Intra-Subset (IS) measures are

the final category required for the counterfactual-

based approach described in Counterfactual Subset.

IS measures describe relations between points within a

single subset.

Variance: The variance IS measure is constructed

using the traditional variance statistic and captures the

expected deviation from the mean for a typical data

point x in subset S. Variance is a widely used measure-

ment and has shown utility as an assessment for coun-

terfactual subsets.84 Generally speaking,

counterfactual subsets with lower variance are desired

because they reflect a more homogeneous set of data

points. The variance measure is defined as follows:

variance(S)=
1

jSj
X
i2S

i� 1

jSj
X
j2S

j

 !2

, ð10Þ

Relevance=
1

2
M1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 �M2
p� �

, ð11Þ

Subset=
jCFj

jCFj+ jIN jð Þ , ð12Þ

Entropy: Similar to the S2S measures, we further

introduced the entropy IS measure. Compared to var-

iance, entropy has an obvious advantage that its value

is independent of the scale of data variables and is only

associated with the probability of data points (as shown

in equation (8)). Thus it could be easier to capture the

impact of variables with smaller value ranges for com-

puting counterfactual subsets. Just as entropy was used

as the basis for an S2S measure in Subset-to-Subset

Measure, a similar approach can be taken for assessing

the disorder within a single set. In fact, the entropy

equation introduced in equation (8) (first introduced

as a building block for sdent) is defined as a function of

a single subset S. This same equation can be directly

used as an IS measure.

Weighted variance and entropy: As with the other

measure types, weighted versions of the IS measures

can be defined to account for differing importance for

each variable given a particular application context.

This is reflected in weighted formulations of the var-

iance and entropy measures: variancew(S,weights) and

entropyw(S,weights), respectively.

Operators

Operators are logical units that take one or more sets

as input and return one or more sets as output. Many

operators include additional inputs beyond sets, such

as measures, which help determine how the operator

behaves. Prior mathematical models of visualizations

exhibit operators with different capabilities, including

operators that apply constraints to produce data sub-

sets,85 specific operators tailored to achieve the mod-

el’s core features,86 and more generic dyadic set

operators.48 In a similar way, we use three general

categories of operators that comprise the Co-op model:

constraint operators, counterfactual operators, and

functional operators.

Constraint Operators Constraint operators are used

to manipulate the data points included within a given

subset based on the inclusion or organizational cri-

teria. These operators would typically be used in

response to user interaction to manipulate SINCL such

that it reflects the user’s analytic focus. Two common

constraint operators are defined in this section: Filter

and GroupBy.

Filter: The most basic constraint operator, Filter,

enables users to apply one or more constraints as inclu-

sion criteria. The Filter operator produces as output a

revised SINCL based on the new criteria, as well as a cor-

responding SEXCL. The Filter operator can be formally

expressed as follows:

Filter(C)) x 2 SINCL, 9x 2 SALL, x � C

x 2 SEXCL, otherwise

�
ð13Þ

C = ½fDim1, cstr1g, fDim2, cstr2g, . . .�, ð14Þ
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where x is a data point, and C is the filter constraints.

The constraints consist of dimension names Dimi and

constraint functions cstri.

GroupBy: Similar to Filter, the GroupBy operator

manipulates a set of data points based on criteria

defined over one or more dimensions. However, rather

than filtering to determine included and excluded sub-

sets, the GroupBy operator turns a set into one or

more subsets (i.e. groups) as determined by the cri-

teria. Each of these can then be processed by further

operators to identify per-group counterfactual subsets,

for example. The GroupBy operator can be expressed

as:

GroupBy(S,Dim½�))

x 2 S1,
9x 2 SALL,

x:Dim 2 Dim½0�
x 2 S2,

9x 2 SALL,
x:Dim 2 Dim½1�

. . .

8>>>>>>>><
>>>>>>>>:

ð15Þ

where S is the initial set to be grouped, Dim is the user-

chosen grouping dimension, Dim½n� is the n-th group-

ing value range in Dim, x:Dim is the value in Dim of

data point x, and Si is i-th resulting group.

Counterfactual Operators Counterfactual operators

are used to identify the points in an excluded subset

that best serve as counterfactuals for a given included

subset. More formally, counterfactual operators derive

a SCF (and corresponding SREM) from excluded subset

SEXCL (or a specific subset of SEXCL) to best match a

given SINCL according to a given measure. There are

two common operator types within this category:

Counterfactual and Resize.

Counterfactual: The Counterfactual operator is the

most critical in the Co-op model as it is responsible for

the core feature of identifying the SCF subset for a given

SINCL by selecting data points from the excluded subset

SEXCL. The output of the Counterfactual operator is a

new counterfactual group SCF and the corresponding

remainder SREM . As introduced in Subset Filtering,

Counterfactual Counterfactual operates using a combi-

nation of similarity measures which can be configured

to control the behavior of this operation. Formally, we

note the Counterfactual operator as follows:

Counterfactual SINCL, SEXCL,Measuresð Þ
) SCF + SREM ,

ð16Þ

Measures= ½fw1,Md1g, fw2,Md2g, . . .�, ð17Þ

where Measures is the input similarity measure vector,

consisting of one or multiple similarity measures Mdi

and (where appropriate) corresponding weights w.

Resize: The Resize operator enables users to modify

an existing counterfactual subset by increasing or

decreasing the number of data points. For example,

when a small SCF is produced by a Counterfactual oper-

ator, the Resize operator can be used to adjust the

threshold such that more data points are included.

The change in size can be driven by the original mea-

sures used to create the SCF or by a new set of measures

used specifically for the resize process. The Resize

operator is defined as follows:

Resize SCF , SINCL, SREM , Size,Measuresð Þ
) S

0
CF + S

0
REM ,

ð18Þ

where Size is the anticipated number of data points in

the new SCF subset; Measures is optional; and S
0
CF and

S
0
REM are the updated CF and REM subset.

Functional Operators The final group of operators

are functional operators. These are designed to sup-

port dyadic set operations87 and provide basic set

manipulation capabilities. Previous studies have

demonstrated the effectiveness of dyadic operations in

visual analytic system design,48 and the concept of sets

is a foundational element in the counterfactual work-

flow. The Co-op model therefore adopts the three most

common dyadic set operations: union, intersection,

and difference. Other set operators, such as comple-

ment or symmetric difference, can be constructed as a

combination of these as needed.

Union: The Union of two subsets S1 and S2 is the set

of all those elements which are in S1, S2, or both:

Union S1, S2,Dimsð Þ= S1 [ S2, ð19Þ

where Dims is the vector of target dimension names to

be employed to compute the union set.

Intersection: The Intersection of two subsets S1 and S2

is the set of all elements which are in both S1 and S2:

Intersection S1, S2,Dimsð Þ= S1 \ S2: ð20Þ

Difference: The Difference of two subsets S1 and S2

is the set of all those elements which are in S1 but not

in S2:

Difference S1, S2,Dimsð Þ= S1 � S1 \ S2ð Þ: ð21Þ

Co-op as a library

The Co-op model of measures and operators provides

a formal foundation for counterfactual-based

workflows within visual analytics systems. Building

on this model, we have developed a general-purpose

software library for counterfactual-based exploratory

visual analysis.
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Implementation

Given the widespread use of Python for statistical

computing and data science, the initial core version of

the Co-op library has been implemented as a Python

library and is available as open-source software. The

library implements all measures and operators follow-

ing algorithms described in The Co-op Model-opera-

tors and provides an extensible API that enables the

easy integration of custom components such as special

measures for a given application domain. The library

builds on the widely-used NumPy88 and SciPy79

packages for measures, along with Pandas89 operators.

The default input data structure is the Pandas

DataFrame. The Co-op library is organized around

two packages: measure and operator. These packages

are further organized as modules that reflect the

groupings outlined in The Co-op Model (P2P, P2S,

S2S, and IS measures; constraint, counterfactual, and

functional operators). The source code is available at

https://github.com/VACLab/Co-op.

Parameter settings

Defaults are provided for all measures and operators

as suggested by a previous study6 and other empirical

guidance of measure computation.4 See Choosing

proper parameter settings for more detailed discus-

sions and implications of parameter settings. However,

developers can modify the default behaviors by imple-

menting their own components. In particular, mea-

sures and distance functions are abstracted from the

design as outlined in the model. This enables custom

new parameters of measure or distance implementa-

tions which can be ‘‘plugged in’’ to the library to custo-

mize the behavior for a given application. When

adding plugins, developers can first implement new

measures in the measures package, which should out-

put a condensed distance matrix, like pdist from

SciPy,79 and then simply input the desired new mea-

sure or measures into the Measures parameter of the

Counterfactual operator from the operators package as

introduced in Counterfactual Operators.

Demonstration

The Co-op model and corresponding library have sev-

eral potential uses, as outlined in the previous section.

However, the motivation for developing this approach

and the primary usage scenario for the library is in

support of counterfactual visualizations within the

exploratory visual analysis process as a mechanism for

improving users’ inferences from visualized data. To

demonstrate how the Co-op model provides a flexible

set of general-purpose capabilities, this section

describes the workflows of two visual analytics systems

built using the Co-op library, along with expert inter-

views regarding the library.

Re-implementing CoFact

As a first demonstration of utility, we used the Co-op

library to re-implement an existing counterfactual-

guided visual analytics system that had been created as

a bespoke application. For this effort, we re-

implemented CoFact6 and its counterfactual-based

workflow for improving the accuracy of users’ causal

inferences from charts.

Workflow The original CoFact enables analyses of

numerical and categorical feature outcomes. Users of

the system perform variable filtering (e.g. Houses

where YearConstructed\2015) via user interactions to

identify subsets of interest. The system then computes

counterfactual subsets based on an Euclidean distance

measure.

Design Space To faithfully support the same func-

tionality in our re-implementation, we also support

categorical and continuous data types in our re-design.

Using Co-op, constraint operators support the filtering

process while the counterfactual operator is used to

compute the counterfactual subset. For the

Counterfactual operator, we selected the P2S distance

as the measure type of our implementation, using the

default Euclidean distance just as described in the

original CoFact paper. This approach resulted in

essentially a feature-by-feature replication of the origi-

nal system design.

CoExplorer: using additional Co-op features

The re-implemented CoFact system, like the original

design, uses only a small portion of Co-op’s expressive

power. To help validate a broader range of features of

the library, we developed a new exploratory visual

analysis platform called CoExplorer which leverages

source code from the Voyager system.8,90

Workflow While enabling all functionalities in

CoFact, the workflow of CoExplorer enables more

exploratory processes. Users are required to perform

variable filtering to get the SINCL (top view in Figure 2)

at first, meanwhile, CoExplorer will show the corre-

sponding visualizations of SCF (bottom left view) and

SEXCL (bottom right view). Other than the default mea-

sures from CoFact, users can further specify supported

distance and measures from Co-op to compute the

SCF . For more exploration, users can click SCF to

replace the SINCL to start a new round of analysis and

can iteratively add new filter constraints to explore

more insights within SCF .
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Design Space Existing exploratory visual analysis

systems enable users to conduct a variety of data analy-

ses and interactions with heterogeneous data types.91

The CoExplorer design therefore supports categorical,

continuous, and time-series data. CoExplorer employs

both distance and entropy-based similarity measures

to compute data subsets using the counterfactual oper-

ator. Figure 2 shows a counterfactual view within the

CoExplorer system. This is combined with a filtering

panel (not shown) that adopts the design found in the

original Voyager.8

Performance analysis

We present the results of a preliminary performance

analysis of the two prototype systems.

CoFact Analysis We evaluated the performance of

computing counterfactuals between the original

CoFact’s algorithm (from the CoFact source code) and

the new Co-op-supported approach. We tested the sys-

tem’s performance on 12 high-dimensional datasets

applied in the previous study6, such as House Price

and College Majors datasets. To normalize performance

times across datasets of different sizes and complexity

in our performance analysis, we computed the relative

ratio of time required by the two systems (original

CoFact, and our re-implementation). The relative

ratio is defined as
Time(Reimplemented CoFact)

Time(Original CoFact)
for

each dataset. In this formulation, a smaller ratio repre-

sents better performance (lower time) when using the

Co-op library.

Figure 3(a) illustrates the relative ratios for compu-

tation time when creating counterfactual subsets

within the original CoFact and the Co-op-supported re-

implementation of CoFact. The overall results show

that the average relative ratio is about 0.79, which

means Co-op achieves 20% better performance on

average in computing counterfactuals compared to the

original CoFact’s computation method.

CoExplorer Analysis To better understand the time

required to compute counterfactual subsets using Co-

op, we compared the performance of CoExplorer in two

modes: (a) with counterfactual subset calculations and

(b) without. Using the same datasets used in the per-

formance evaluation for CoFact (see section), we

employed a similar relative ratio measure to evaluate

the computational resources required in the two

modes.

Figure 3(b) shows the resulting relative ratios across

the 12 datasets with and without counterfactual com-

putations. The data shows that including the counter-

factual computations using Co-op introduces about 9%

additional compute time on average, and no .20% for

the tested datasets.

Limitations of Performance Analysis While the com-

putational overhead in these examples shows a rela-

tively modest overhead in compute time, however,

since our demonstrations mainly focused on showing

the functionality of Co-op, this preliminary-level analy-

sis is inadequate to provide further insights into the

source of the performance advantage or deficit.

Therefore, it is not clear how these delays in respon-

siveness would impact users’ experience in analysis

tasks and broader exploratory usage scenarios and

Figure 2. A screenshot from CoExplorer. The top panel
shows SINCL, while the bottom left and right show SCF and
SEXCL, respectively. Users can select SCF as the new
included subset to start a new round of analysis.

Figure 3. (a) When comparing computation times between
Co-op and the previously published CoFact system, Co-op
was faster as evidenced by relative ratios below one. (b) In
the new CoExplorer prototype, comparing computation
times with and without Co-op’s counterfactual
computation enabled shows a relatively small
performance overhead for that capability.
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whether the performance gain is due to which specific

measures or operators in the model. In addition, the

compute time is dependent on dataset size as well as

available computational resources. A deeper perfor-

mance analysis that more systematically studies these

parameters is an important topic for future work.

Additionally, existing user interfaces provided

advanced abilities such as layered or faceted views,7

future work should focus on employing Co-op to those

advanced functionalities.

Expert interviews

To demonstrate the usability of Co-op to visualization

developers, we conducted 30-min qualitative inter-

views with six experts. These experts comprised three

visualization researchers (denoted as R1–R3) and three

data visualization engineers (denoted as E1–E3). R1

and R2 had prior experience in creating counterfactual

visual analytics systems.

We first provided a brief introduction of counterfac-

tual visualizations using examples from prior stud-

ies.6,22,92 Then we asked them to think about what

their requirements would be to incorporate a counter-

factual library into their own visualization systems.

Further, we introduced and provided the details and

workflows of our model and prototypes, and asked for

their opinions on the benefits and limitations of this

model, and to what extent it would meet their

demands.

Here we revisit the set of design goals (presented in

Design Goals) after considering the two prototype sys-

tems and experts’ responses.

Efficiency: All experts agreed that the library in

Python would be able to provide higher computational

capability through efficient Python statistical libraries

in computational tasks. R1 and R2 specifically talked

about the drawback in JavaScript that they needed to

implement distance and subset computations manually

when using counterfactuals in their systems. E1 appre-

ciated that we primarily provided a Python library

which is the most common for analysts. Our prelimi-

nary performance analyses (see Performance Analysis)

also suggest that the computational efficiency of Co-op

outperformed an existing algorithm6 and added rela-

tively little overhead to a non-counterfactual-based sys-

tem. However, further studies of performance and

issues of scale are still needed and the computational

capacity at scale must be further studied to improve

efficiency.

Transparency: R1 and R3 agreed that the mathemat-

ical formulations of the model and the open-source

software for the library make the operation of the soft-

ware quite transparent to developers and system

designers. R2 said the JavaScript appendix would be

able to help people without Python knowledge see

how the model computes counterfactuals. In addition,

E3 pointed out concerns about entropy which they felt

was a concept that might not be general knowledge for

many data visualization software engineers. This

implies that the entropy measure may require addi-

tional effort to learn before it can be used effectively.

Comprehensibility: The operator-based model that

underpins the Co-op library provides a relatively logical

organization of the library’s capabilities and behaviors.

All three engineers agreed that the provided examples

make it easy to understand counterfactuals, and the

definitions of measures and operators should be easy

for people with an engineering background to under-

stand. However, this paper did not focus on evaluating

human cognition of counterfactual visualizations or

developer understanding of the library’s API.

Additional studies are required to help answer these

questions.

Flexibility: The proposed prototypes demonstrate

that Co-op can work with multiple kinds of data (e.g.

categorical, continuous, time-series), visualization

types, and exploratory workflows. However, E2 men-

tioned that presenting counterfactuals in spatial data

may provide great value for causal inference as well,

providing an example that viewing counterfactuals

may help easily find the poison pump in John Snow’s

broad street pump map of the 1854 cholera out-

break,93 however Co-op currently does not directly

support spatial data.

Compatibility: The CoExplorer prototype shows that

Co-op can be integrated with pre-existing code from

the Voyager system.8 In addition, we used Co-op to

implement the CoFact system.6 These examples show

that the library is interoperable in a practical way to

provide capabilities for a variety of existing systems.

R1 appreciated our reimplementation of CoFact which

maintained the functionalities while significantly

reducing the programing workload of creating

counterfactual-supported visual systems. E3 men-

tioned that counterfactual computations in Co-op can

be regarded as an advanced step of data filtering, thus

the computation flow is obviously generalizable and

compatible with most visual analytics systems.

Lowering Implementation Barriers The experts

offered insights into how Co-op can help overcome or

mitigate implementation barriers when creating new

counterfactual-based visualization systems. First, pro-

viding robust implementations of core capabilities

within an open-source library naturally makes technol-

ogies easier to use by eliminating the need for others

to re-implement algorithms or design new computa-

tional models. For this reason, leveraging reliable

libraries where they exist is a recognized best prac-

tice.94 All experts agreed that Co-op can ease the
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implementation burden for developers who want to

add counterfactual computations into visualizations,

since they would not need to learn the details of com-

plex counterfactual concepts or design a new calcula-

tion pipeline. Further, data visualization engineers E1-

E3 concurred that the functions that comprise the API

for Co-op are simple and easy to understand, even for

junior-level developers. Specifically, R1, based on her

own experience working without the benefits of Co-op,

pointed out that she spent a long time determining

parameters and measures when computing counter-

factuals. In contrast, Co-op offers a range of choices of

established measures that can typically provide good

results and adhere to best practices, often using

default parameters. However, R1 also mentioned that

there is no magic solution for all situations. That is to

say, to achieve the best comparison of counterfactual

subsets, developers still need to understand and com-

pare the parameters across different measures. This

suggests that additional work to better characterize

how subset distributions are impacted by different

parameter settings could be a valuable addition in the

future development of Co-op. Another concern was

raised from R2 that Co-op did not provide a visualiza-

tion configuration panel, which could make it more

difficult for developers to easily compare the results of

different parameters.

Discussion

The operator-based model and corresponding Co-op

library provide application developers with a rich set of

capabilities for developing counterfactual-based visual

analytics systems. As shown by Demonstration, the

library can be leveraged in different ways to support a

variety of user experiences. This section presents some

reflections regarding the design considerations out-

lined earlier in this paper, discusses implications for

system developers, highlights key limitations, and iden-

tifies opportunities for future work.

General discussion

Co-op and visualization As discussed in the expert inter-

views, Co-op abstracts the complexities of implement-

ing counterfactual computations, which in turn

enables visualization developers to focus on design and

user experience rather than low-level technical details.

In this way Co-op can accelerate visualization develop-

ment and ease the integration of counterfactual-based

capabilities in a manner similar to other libraries

designed to support the development of visualization

software. Its open-source nature encourages collabora-

tion and engagement with real-world use cases. This

can help in soliciting feedback from the community to

advance its development, including the contribution of

new operators, sharing best practices, and collectively

advancing its capabilities.94

Choosing proper parameter settings To maintain the

structures and provide proper framing of SCF subsets,

it can be useful to set up some restrictions on comput-

ing counterfactuals. Existing evidence showing that

simpler counterfactual explanations that are compara-

ble with input data might lead to easier understanding

for users95 Thus we recommend developers select the

default size of SCF to be equal to SINCL. However, for

cases where SINCL‘s size approaches the size of SEXCL,

this becomes problematic. Therefore, the size of SCF

should generally not grow to be larger than half the

size of SEXCL. This methodology is also seen in prior

work.6

Prior studies also suggest that counterfactual sets

should have low variance to minimize bias.96 Other

related prior work focused on financial and commod-

ity applications also suggests benefits from lower

entropy.97 We therefore suggest using measures of var-

iance and entropy to validate the computed SCF sub-

sets following the above guidelines. Our goal is to

minimize the similarity metrics while maintaining the

major counterfactual structures by providing low var-

iance and entropy. Empirically, we recommend devel-

opers initially use the lower bound of the interquartile

range (IQR)4 of variance and entropy among the data

subsets as the default threshold settings for computing

counterfactual subsets, as this has been demonstrated

to be effective in existing quality metrics.40,41

Adding interactions with Co-op-supported systems

Interaction plays a fundamental role in visualization

and has the potential, when correctly designed, to

improve the quality of analytics systems.98 Researchers

have defined a number of interaction types in informa-

tion visualization.98 Though the prototypes in this

paper exercise only a small number of examples of

possible interactions, CoExplorer can still provide more

exploratory ability than CoFact by simply clicking on

SCF to replace the SINCL. The rich variety of interaction

types and design methodologies developed by the

visualization community can be used in combination

with Co-op to enable a wide variety of potential

applications.

Fitting with the user’s goals, data types, tasks, and

preferences In real-world usage scenarios, varying tasks

and user demands require different types of outputs

and insights99,100 and result in different levels of

comprehension.11 A task-aware approach to data

communication and exploratory visualization design is

required to maximize the utility of a given sys-

tem.15,35,99 Therefore, the prototype applications in

this paper are simply exemplars of possible counterfac-

tual workflows. Co-op should be used in the context of
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designers’ specific application objectives to best sup-

port user performance.

Limitations

Though the Co-op model and library can enable a wide

range of counterfactual-based visualization usage sce-

narios, there remain some limitations that pose chal-

lenges. For instance, while the Co-op library provides

default settings and we recommend certain best prac-

tices for creating SCF subsets (see Choosing proper

parameter settings), these are based on our empirical

observations and other related work. However, there

remains little evidence-driven guidance on how to best

select the ideal counterfactual subset during explora-

tory analysis. This remains an important open problem

for future study. Moreover, Co-op currently cannot

process spatial datasets, a common data type that

many applications require.

The current model also does not make any attempt

to unify the various measures into a comprehensive

framework which could be the basis for automation.

Usage of Co-op as currently described therefore still

requires manual configuration and design to yield the

best results. Moreover, the prototypes presented as

examples of Co-op-enabled applications both adopted

existing visualization designs without any attempt to

improve or optimize how the counterfactual informa-

tion is presented to users. Therefore this paper does

not make suggestions for how to best visualize coun-

terfactuals in an intuitive and effective way.

Finally, while we preliminarily measured the perfor-

mance of the prototypes, no analysis was done to study

how the library works at scale. The performance of the

system as datasets grow very large, along with the

impacts of potentially slow computations on user expe-

rience, remains unstudied.

Future work

In future work, we aim to address a number of the lim-

itations outlined above. First, we aim to extend Co-op

to support spatial data and the potential for other addi-

tional data types. We also hope to conduct broader

user studies to help build an evidence base for best

practices when designing counterfactual-based visual

analysis systems. This includes a better understanding

of users’ ability to interpret counterfactual information

and preferences for how that information is displayed.

Improving computational performance and scalabil-

ity, as well as providing a richer set of measures and

operators for specific contexts is also an important

future direction. Related to this goal, we aim to expand

and promote the usage of counterfactuals in a wider

variety of visualization algorithms and designs, such as

using counterfactuals to guide visualization recom-

mendations and data subset selection in dashboard

design. By expanding the variety of applications and

domains in which these approaches are used, the com-

munity will more quickly overcome limitations and

learn about best practices.

Conclusion

This paper presented an operator-based model to

enable counterfactual-based subset computation in

visual analysis. The model included a variety of mea-

sures and operators that combine to support a coun-

terfactual workflow which has been shown to improve

users’ inferences from visualized data. This model was

instantiated within the Co-op library, an open-source

Python library for bringing general counterfactual-

based subset computation algorithms to exploratory

visualization workflows. Co-op can be used by develo-

pers to easily incorporate counterfactual workflows

into their visual analytics systems, and the library’s

design enables developers to extend and customize its

behavior to meet application needs. The general utility

of the model was demonstrated through its use in two

prototype systems with different workflows, including

both a re-implementation of an existing system and a

new exploratory one, and an interview for experts in

visualization research and engineering. Informed by

these experiences, the paper concluded with a discus-

sion of implications on system design, limitations, and

areas for future work.
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