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Abstract
Counterfactuals—expressing what might have been true under different circumstances—have been widely applied in
statistics and machine learning to help understand causal relationships. More recently, counterfactuals have begun
to emerge as a technique being applied within visualization research. However, it remains unclear to what extent
counterfactuals can aid with visual data communication. In this paper, we primarily focus on assessing the quality of
users’ understanding of data when provided with counterfactual visualizations. We propose a preliminary model of
causality comprehension by connecting theories from causal inference and visual data communication. Leveraging
this model, we conducted an empirical study to explore how counterfactuals can improve users’ understanding of
data in static visualizations. Our results indicate that visualizing counterfactuals had a positive impact on participants’
interpretations of causal relations within datasets. These results motivate a discussion of how to more effectively
incorporate counterfactuals into data visualizations.
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Introduction

Visualization has become an indispensable tool to help
gain insights into increasingly large and complex multi-
dimensional datasets. However, effectively communicating
meaningful causal relationships in such datasets remains
challenging1–3. To help address this issue, researchers
have explored the use of causal analysis theory to inform
visualization design4,5. One approach that has gained
popularity is the use of counterfactual reasoning6,7, a
fundamental tool in statistical causal inference that uses
hypothetical scenarios to investigate causal relationships. For
example, an investigation of the effect of hunger on student
test scores may involve considering the counterfactual where
students ate lunch before sitting for an exam. Counterfactuals
have been applied in a number of visual analytics systems
for machine learning explanation8,9 and exploratory visual
analysis10.

While some effective use cases have been reported in
previous work, it remains unclear how and to what extent
counterfactuals can help users gain a deeper understanding
of visualized data. Prior empirical studies in visual
causal inference and counterfactual visualization focused on
assessing spurious causal correlations11, modeling treatment
effects and confounding factors12, and exploring users’
confidence in feature-to-outcome relations10. However, this
existing body of work has mainly evaluated self-reported
confidences and preferences in specific contexts. As a result,
there remains a lack of general understanding of how
applying counterfactuals to data visualization can benefit
users’ causal inferences.

In this paper, we explore whether and how counterfactuals
in general-purpose visualizations can help users gain a
deeper understanding of causal relationships within their

data. Drawing inspiration from research on the cognitive
process behind visual data communication13–15, we first
propose a novel visual causality comprehension model—
capturing how we expect people to read and comprehend
causal information from visualizations—that includes four
progressive levels: recognizing, understanding, analyzing,
and recalling.

Based on this preliminary model we conducted an empir-
ical study employing four tasks derived from the corre-
sponding comprehension levels. Motivated by prior work
that examined how people can draw causal inferences from
simple visualizations10–12,16, three common visualization
types—line charts, bar charts, and scatterplots—were used
as stimuli to present various datasets. For each dataset, a
corresponding set of counterfactual-based visualizations was
constructed based on the methodology used in prior work10.
In each phase of our study, participants were randomly
shown different combinations of chart sets displaying dif-
ferent levels of counterfactual information. They were then
asked to answer questions related to three design objectives:
recognizing correlations, making predictions, and identi-
fying causal relationships. Additionally, participants were
asked to report how much they could recall about the datasets
ten minutes after completing the study.
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The study found that using counterfactuals in visualization
design significantly improved participants’ ability to
understand and draw inferences from datasets, while
also improving recall. Moreover, participants reported that
counterfactuals helped them reason about hypothetical
scenarios and identify causal relationships that were not
immediately apparent. The study results also suggest that
counterfactual designs do not impair users’ ability to read
charts. However, counterfactuals did require longer response
times for answering questions. Based on these findings, we
propose a set of design heuristics to guide the integration
of counterfactuals into data visualizations. These guidelines
can assist researchers and designers in creating effective
counterfactual visualizations to aid in enhancing users’
comprehension of complex data.

In summary, the contributions of this paper include:

• A preliminary model of visual causality compre-
hension that characterizes the human cognition pro-
cesses used to understand visualizations in the context
of causal inference theory.

• Results from an empirical study evaluating the
impact of counterfactual visualizations on the interpre-
tation of datasets along a progression of communica-
tion levels.

• A set of design heuristics to help guide future work
with counterfactual visualizations in light of existing
visual design guidelines.

Related Work
This section introduces key definitions and provides an
overview of relevant previous work, including prior research
on visual data communication, the use of counterfactuals in
visual analytics, and human visual perception of causality.

Definitions for Counterfactual Visualization
As briefly described in the introduction of this paper,
counterfactual reasoning6,7 is a fundamental concept in
statistical causal inference. This methodology involves
analyzing what might happen under alternative scenarios
in which only a specific condition is different with the aim
of understanding the causal effect of that specific condition.
Many visual analytics workflows involve the creation of data
subsets for focused analysis, as exemplified by the Zoom and
Filter step of Shneiderman’s Mantra17. The counterfactual
approach integrates well with such analyses, and can be
operationalized through the creation of four different subsets:
the included (IN) subset, the excluded (EX) subset, the
counterfactual (CF) subset and the remainder (REM)
subset10. These are defined as follows:

• IN: The data subset of interest, specified via certain
inclusion criteria.

• EX: The rest of the dataset that has been excluded
based on the inclusion criteria. This contains all data
not included in IN.

• CF: Selected to include data points from EX that are
similar to those in IN across all dimensions other than
the inclusion criteria for IN. The CF subset therefore
aims to enable counterfactual reasoning with respect
to the data points in IN, as the user can investigate

alternative scenarios based on subsets that are similar
to IN except for the fact that the inclusion criteria is
not satisfied.

• REM: The remaining data points from EX that are
not included in CF. In other words, the excluded data
points that are also dissimilar from IN.

These subsets are illustrated in Figure 1 (a), (c), and (e),
and the method for selecting them for the purposes of the
user study presented in this paper is described in Stimuli.

Counterfactual visualization aims to provide comparisons
of useful combinations of data subsets that can provide
additional information to improve reasoning about causal
relationships in the data. Following Kaul et al.10, we refer
to a counterfactual visualization as a combination of three
charts showing the IN, CF, and REM subsets (Figure 1 (f)). A
traditional visualization of a chart showing just the IN subset
is treated as a control group in our study (e.g., a scatter plot
showing positions of only data points in IN).

However, since counterfactual visualizations include a
comparison across multiple charts (IN + CF + REM), a
second control group with two charts showing the IN and
EX subsets (e.g., Figure 1 (d)) is also included in the study
design reported in this paper. The charts for this second
control group display all data points as is the case with
counterfactual visualization designs, but they only show the
EX subset rather than the similarity-driven subsets CF and
REM.

Figure 1. The four types of data subsets used in our study,
illustrated with the student test scores example from the
introduction. (a-b) are all data points in the dataset and
corresponding traditional bar chart visualization of the average
test score for all students. When the students who ate launch
after the test are selected as IN, (c-d) shows the subset
relations and visualizations between the IN and EX subsets,
and (e-f) shows the relations and visualizations between the IN,
CF, and REM subsets.

The purpose of visualizing CF is to show the user data
points that are similar to IN across all dimensions in the
data other than the inclusion criteria for IN, thus helping
them confirm or deny any causal relationships they may
assume from looking at IN alone, based on the inclusion
criteria for IN. E.g., in the student test scores example from
the introduction, if IN contains students who ate lunch after
taking a test, and a visualization shows that they have low
test scores, users might assume a causal relationship between
hunger and test scores (see Figure 1 (d)). In this case, CF
would contain students who ate lunch before taking the test,
but who are similar to IN in all other respects. If the students
in CF also have low test scores, that would weaken the
evidence for a causal link between hunger and test scores (see
Figure 1 (f)). On the other hand, if the students in CF have
high test scores, that strengthens the evidence of a causal
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relationship. The EX and REM subsets contain individuals
dissimilar to IN across all dimensions of the data, providing
further context to help with causal inference. Figure 1 (b),
(d), and (f) show visualizations for the student test scores
example.

Human Cognitive Processes and Visual Data
Communication
One stated advantage of visualization is that it “forces
us to notice what we never expected to see”18,19 within
datasets quickly and easily20,21. Designers aim to present
information to users in the most effective way. However,
achieving these goals is not always easy, as the efficiency
of visualizations can be influenced by various factors such
as visual encodings, data type, and even designers’ own
biases2,15.

Existing research has examined various factors impacting
the comprehension and communication of data in visual-
izations. Task-based analyses are a common approach, in
which researchers explore and summarize how to design
visualizations to aid understanding for specific tasks, such
as low-level graphical perception22,23 and color design24,25.
In addition to task-based studies, researchers have also
investigated how to assess and model users’ understanding
and ability to communicate visualizations through evaluating
study strategy design26,27, and visual quality measures28,29.
Interdisciplinary insights have also been proposed, such as
Bae et al.’s assessment of how curiosity and play in physi-
calizations improve data visualization literacy in children’s
education30.

Moreover, Adar and Lee13,15 built on previous studies to
develop an affective learning objective framework that aligns
with Bloom’s affective taxonomy31. They conceptualized
the visual data communication problem between designers
and users as a learning problem in a teacher-student
relationship. By doing so, they summarized insights in
human cognition objectives that enable designers to describe
their visualizations’ goals and compare their communication
ability with users to those goals in a formalized way.

In this paper, we gain insights from prior insights on
human cognition objectives in visual data communication to
counterfactual visualization. We aim to explore how people
comprehend counterfactuals in visualizations, taking into
account the specific demands of counterfactual reasoning.

Counterfactuals in Visual Analytics
Counterfactual reasoning is a fundamental concept in
statistical causal inference6,7. It involves constructing
hypothetical scenarios that deviate from reality and
making inferences about what would happen under those
counterfactual conditions. For example, we might ask, “What
would the sales figures have been if we had lowered our
prices by 10% last year?” to assess the causal relations
between price and sales figures. Counterfactual reasoning
has been widely recognized for its importance and has
recently gained traction in the deep learning community,
where it has been applied for tasks like model testing32 and
narrative reasoning33. While most of these studies are non-
visual and result in natural language output, we focus here

on the application of counterfactual reasoning in the context
of visual analytics34.

The vast majority of existing work on counterfactual
visualizations has focused on improving explanations for and
the interpretability of machine learning models. For instance,
the What-If Tool35 provides a basic visualization of the
nearest counterfactual point to the target data point, ViCE 9

uses counterfactuals to illustrate minimal edits required
to modify the output of the visualized model, DECE 8

enables the visualization of counterfactual examples from
different data subsets for decision-making, and INTERACT 36

allows what-if analysis to improve model explainability and
prototyping under industrial contexts. Although these studies
present effective use cases for their systems, they focus
primarily on machine learning model explanations rather
than providing insights for general-purpose visualizations.

The potential uses of counterfactuals are not limited
to the problem of explaining machine learning models34.
In recent work, Kaul et al.10 presented CoFact, the
first counterfactual-based interactive visualization system
designed for general datasets. CoFact enables users to
explore high-dimensional datasets via pairwise visualization
of features, prioritized based on association with an outcome
variable. Counterfactual visualizations of selected data
subsets provide additional information about feature-to-
outcome relationships. Although this work provided initial
findings on the usefulness of counterfactual visualization
in the context of an interactive visual analytics tool, there
remains a gap in understanding the impact of counterfactuals
for more general data visualization and communication.

Kaul et al.10 further assessed how the CoFact system
helped users learn feature-to-outcome relationships from
datasets. Their results provided preliminary evidence that,
with counterfactual visualization enabled, users showed
greater confidence in strong outcome relationships and lower
confidence in weak outcome relationships. The post hoc
analysis of interviews found that CoFact could be useful for
data exploration and decision-making. However, their study
mainly focused on the proposed visual analytic system and
lacked insights for more general visualizations. Furthermore,
they did not assess the quality of causal inferences generated
by users with the help of counterfactuals. The study in this
paper aims to address both of these issues.

Human Visual Perception of Causality
Properly designed visualizations can help users avoid mak-
ing spurious assumptions about causal relationships, leading
to improved decision-making37. Thus, understanding how
human perceptions of causal inference are processed and
impacted by visualizations is important for visualization
research.

Xiong et al.11 explored how various graphs can create
an illusion of causality, i.e., how they can lead to incorrect
interpretations of data. They introduced some preliminary
insights for visualization design, such as causal inference
results for text descriptions and bar graphs being better than
those for scatterplots. Another crucial finding from their
work is that the data aggregation level of visualizations
might be positively associated with users’ self-reported
confidence in causal inferences. However, their study
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focused on assessing users’ self-reported ratings of pre-
designed causality statements, thus lacking insights of users’
actual causal inference results.

Further, Kale et al.12 introduced an empirical study for
evaluating causal inferences via the causal support model
from mathematical psychology38. Their results indicate
that user capability for causal inferences is insensitive
to sample size. They also reported that using different
visual encodings would not be significantly better than
tables for causal inference. However, their second finding
is inconsistent with most existing visual causal analytics
systems all of which indicate that visualization would benefit
causal inference8–10,39–41. This difference may be related to
different design strategies between the empirical study and
interactive visual analytics systems, but still needs to be
further studied.

Network visualizations such as Bayesian Belief Net-
works42 are often employed for causal inference tasks. How-
ever, a number of prior studies10–12,16 have shown that users
also draw causal inferences from common visualizations
including scatterplots, line charts, and bar charts, even if
they were not intended to show causal relationships. More-
over, starting from simplified and easy-to-understand tasks
is a common and important approach to exploring complex
concepts in empirical studies43,44. For these reasons, our
study primarily focused on these three common visualization
types.

In this study, we aim to systematically evaluate and model
the impact and effectiveness of counterfactuals in helping
users understand data at different data communication lev-
els13 for general-purpose charts, building upon the previous
definition of counterfactual visualization10. Compared to
existing studies, we primarily focus on evaluating the quality
of users’ causal inference results instead of just assessing
self-reported confidence or preference levels, and discuss the
design space of how to use and understand counterfactuals
in visualization. By doing so, we intend to provide empirical
evidence supporting the use of counterfactuals in visual
analytics.

Modeling Causality Comprehension

Existing empirical studies on causality in visualization11,12

have not explored the perceptual data communication
process underlying visual causal inference. To advance
our understanding of how counterfactuals can enhance
users’ comprehension of data, we propose a preliminary
causality comprehension model for visualization scenarios.
The proposed model aims to decompose this process and
shed light on the potential benefits of using counterfactuals
in data communication.

According to statistical causal inference theory6,7,
causalities can be classified into three levels: association,
intervention, and counterfactual. In this paper, we propose
a model of users’ progressive understanding of causalities
in visualization by connecting these three causal inference
levels with four important cognitive objectives that occur
when users communicate with visualizations13,15,23,45 —
Recognize, Understand, Analyze, and Recall — resulting in
four comprehension levels:

Figure 2. Framework of the proposed causality comprehension
model. The left dashed box shows the causal inference
theory 6,7, connected to cognitive objectives in visual data
communication on the right.

• Association → Recognize: At the preliminary level
of causal inference, association involves identifying
statistical correlations between variables6,7, e.g.,
“what does this survey tell us about the election
results?” Such correlations can be directly expressed in
a simple chart, e.g., showing the monotonic relation of
two axes in a scatterplot. Users can typically identify
these correlations by directly reading a chart. This
ability is closely related to the recognize process in
human cognition.

• Intervention → Understand: The second level,
intervention, involves manipulating one variable to
observe the effect on another variable in a dataset,
e.g., “will my headache be cured if I take aspirin?”
This level requires users to interpret the meaning of
variables, summarize and compare their trends, and
make relevant predictions. These aspects are expressed
as the cognitive ability to understand.

• Counterfactual → Analyze: The highest causal
inference level, counterfactual, involves predicting
what would have happened if a different intervention
had been made in the past, e.g., “what if I hadn’t
gone to college in the past?” Counterfactual thinking
involves thinking about the impact of other related
variables in this dataset. It is more complex than
intervention and requires distinguishing the interaction
effects of different variables, integrating cross-variable
insights, and deconstructing their impact across the
whole dataset. We therefore connect it to an advanced
cognitive ability in visual data communication—
analyze.

• Counterfactual → Recall: In addition to the above
connections, we include the cognitive ability of
recall, which describes the memorability of visual
communication and is a component complementary to
recognize13. We therefore also connect counterfactual
with recall. We placed it as the last step of causality
comprehension because recall appears in the final
stage of visual understanding in general45,46.

In summary, we define a preliminary model of the
visual causality comprehension process of human perception
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as a progression from recognizing, to understanding, to
analyzing, and finally recalling, connecting the theory of
causal inference and users’ cognitive processes of visual data
communication. Figure 2 illustrates an overall picture of our
model.

Methodology
To assess how counterfactual visualizations impact people’s
ability to reason about and comprehend causality in real-
world datasets, we ran a user study that was approved
by the [Redacted] Institutional Review Board. This study
enabled us to characterize the effect of counterfactuals in
different types of static visualizations, including to what
extent they help users infer causal relationships. The datasets
and example infrastructure applied in our study are available
in the supplemental material.

Participants
We recruited 32 participants (19 male and 13 female, based
on a power analysis47 of pilot studies) via recruitment flyers,
department mailing lists, and contacts within professional
networks. All participants were at least 18 years old, reported
normal or corrected to normal vision, and were either
pursuing or had earned a university degree. Participants
were from a broad spectrum of academic and professional
domains. Our experiment took 45 minutes on average, and
each of the participants was compensated $10 for their time.

Hypotheses
Based on the proposed causality comprehension model, we
hypothesized that:

H1: Counterfactuals would not hurt people’s ability to
recognize features of data.
As the most basic level of communication, the
recognizing process always appears in low-level
visual tasks48. Visual complexities and design choices
within a chart could impact its performance49,50.
However, previous work suggests that counterfactual
visualizations can be integrated into a visual analytics
system without decreasing system usability10. In
addition, we chose a juxtaposition visual comparison
model that has been employed by many existing
studies51–53 to maintain a low visual complexity for
visualizations of each data subset (Figure 3 (b) and
(c)).

H2: Counterfactuals would help people’s understand-
ing of datasets.
In existing visual analytic systems8–10, counterfactuals
are shown to be effective in understanding complex
algorithms and judging feature-to-outcome relation-
ships. We expect that counterfactuals will also be ben-
eficial to help understand data using general-purpose
charts.

H3: Counterfactuals would help people better find and
analyze causal relationships in datasets.
An obvious advantage of counterfactuals is to make
apparent underlying causalities in data7,12. We expect
their impact to be similar to that of insight explorations
which also aim at finding hidden relations in data.

Insight exploration methods have been demonstrated
to be useful in deeper data analysis54–56. Such findings
indicate that we may see similar advances with
counterfactuals, i.e., improved analyses and causal
inferences.

H4: Counterfactuals would improve the performance of
recalling data.
Perceptual studies demonstrate that additional infor-
mation and encodings can help people better commu-
nicate and recall data45. Counterfactual visualizations
provide extra information to users, and we anticipate
that such counterfactual information will help people
remember and recall findings from data more easily.

Stimuli
Our stimuli were created from commonly used real-
world multi-dimensional datasets found in prior studies,
such as the UCI Credit Card dataset* 57 and the Census
Income dataset† 58. We followed the process of the CoFact
system10 for generating the data subsets for visualization,
as it is currently the only counterfactual-based system for
exploratory visual analysis.

We generated the data subsets as follows:

• Picking an included (IN) data subset based on the
variables of top-recommended insights computed by
a dataset insight exploration algorithm54, e.g., all
individuals with one child from a family-income
dataset. This selection also results in an excluded (EX)
data subset (individuals that do not have one child).

• Creating the counterfactual (CF) data subset from
EX following previous work10 by (i) computing the
Euclidean distance from each point in EX to each point
in IN, and (ii) selecting the n points from EX that have
the shortest total distance, where n = |IN |.

• Denoting the remaining data (neither in IN nor CF)
as the remainder (REM) data subset, resulting in four
subsets (IN, EX, CF, and REM) for each dataset (See
Figure 1).

The stimuli were separated into three groups containing
different subsets to be visualized:

• IN group—IN subset only (e.g., Figure 3 (a)),
• EX group—IN + EX subsets (e.g., Figure 3 (b)), and
• CF group—IN + CF + REM subsets (e.g., Figure 3

(c)).

We chose three common visualization types to display the
data subsets: line charts (for time-series data), bar charts (for
categorical data), and scatterplots (for continuous data). In
total, we generated 27 groups of visualizations and employed
them in a within-subject study. Figure 3 shows examples of
the three groups of data subset visualizations with different
chart types.

Tasks
We derived four tasks based on our causality comprehension
model:

∗https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
†https://archive.ics.uci.edu/ml/datasets/adult
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Figure 3. Three examples of data subset visualizations seen by participants in the user study: (a) IN subset scatterplot
visualization of the Health Insurance dataset, showing only data in the IN subset. (b) EX subset line charts visualization of the
Census Income dataset, showing data in both the IN and EX subsets. (c) CF subset bar charts visualization of the UCI Credit Card
dataset, showing data in the IN, CF, and REM subsets.

T1: Describe anything of interest noticed by looking at the
current visualization.

T2: Predict changes in a variable if a different variable
were to be manipulated.

T3: Make broader predictions about what will happen if a
particular variable from the current chart were to be
changed or replaced with another one.

T4: Report recall of tested visualizations.

Table 1. Examples of questions per task.

Task Example Question
T1 Look at the charts and describe anything you can

recognize from the visualization.
T2 What will the remaining loan value change

(increase, decrease, or remain similar) if people’s
credit limits become higher?

T3 What will the data change in the above-shown
chart if people’s marital status changes to divorce?
For example, think about average values, trends,
and distributions.

T4 Describe visualizations that you can still remem-
ber.

Participants were required to answer three questions for
each task from T1 to T3, and were shown each subset
combination group (as introduced in Stimuli) once for
each task. For questions asked in T2, we hid the last
5% of the dataset to serve as the ground truth, following
the approximate percentage for the validation set in the
Microsoft COCO dataset59, to use as validation for users’

answers. Table 1 shows examples of specific questions asked
for the different tasks.

Procedure
Our experiment consisted of five phases: (1) informed
consent, (2) term introduction and task description, (3)
formal study for T1-T3, (4) post-study feedback and
preference questionnaire, and (5) answering the recall
question for T4.

Participants were shown and agreed to the informed
consent with our IRB protocol at the beginning of
the study. We then explained any unfamiliar terms and
provided examples appropriate for a general audience—
we explained the definition of different subsets, provided
examples of counterfactuals with narrative explanation
(similar to examples in Counterfactuals in Visual Analytics),
and encouraged users to imagine hypothetical assumptions
during the study—before introducing the required tasks in
the study.

After completing the study introduction, each participant
was required to view visualizations and answer questions
for tasks T1-T3 in a random order, while avoiding back-to-
back questions for the same task, to account for learning
effects. Participants provided their answers in a textbox. In
addition, they provided their confidence for each answer via
a 5-point Likert scale. During the study, each participant
completed 3 questions for each task—1×IN group, 1×EX
group, and 1×CF group—and was shown a particular data
set + visualization group combination once. See Stimuli for
definitions of the three subset groups.
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After completing T1-T3, each participant completed a
questionnaire reporting their experience including useful-
ness, confidence, preference, and any additional feedback.
We extended the feedback session by 10 minutes by chatting
with participants and finally asked them to report their recall
of any information remembered from the viewed visualiza-
tions. The recall list was ranked from the most memorable to
the least memorable by each user.

Result Encoding
We collected participants’ thinking and completion time,
verbal and textual responses, and reported confidence in
each question. For natural language input, we encoded them
as quantities using axial coding60 (see Table 2 for details
about the evaluation metrics). We received 320 responses
in total, with 288 for tasks T1 to T3, and 32 responses for
task T4. The responses were encoded into four different
types following our proposed tasks and the model defined
in Modeling Causality Comprehension.

Table 2. Evaluation metrics for each task.

Task Evaluation Metric
T1 Number of findings, correctness rate
T2 Correctness rate
T3 Correctness rate, relative impact ratio (see Ana-

lyzing Causality for its mathematical definition)
T4 Number of recalled datasets

For task T1, we extracted the statistical descriptions and
findings from reported responses, computed the number
of findings in each response, and verified the correctness
of the findings. Note that since T1 was focused on the
ability to recognize, users were requested to describe findings
without inferring any correlations between variables. For
T2, we collected the prediction results and validated their
correctness based on the remaining 5% of the dataset,
as described in Tasks. For T3, we collected findings and
predictions from users’ responses and computed the average
correctness. Meanwhile, for both T2 and T3, we also
collected the evidence or reason to support the answer to each
question if it was reported. Finally, we recorded the number
of recalled datasets per visualized subset type from each
response for T4. Table 2 describes the selected evaluation
metrics for each task.

Results
We present our analysis methodologies, statistical analysis,
and significant results based on the independent factors
considered in this paper (see Analysis) using both traditional
inferential measures and 95% bootstrapped confidence
intervals (± 95% CI) for fair statistical communication61.

Analysis
The overall goals of our analysis were to test the
proposed hypotheses and to validate related findings from
previous studies. To achieve these goals, we analyzed
performance using the following quantitative evaluation
metrics: completion time, reported confidence, number of
reported findings or variables, correctness rate, and recall

rate. For each task, we assessed the resulting data using a 3
(visualized subset groups: IN, EX, and CF) factors ANOVA,
where the chart types, inter-participant differences, and trial
order are treated as random covariates, with Tukey’s honestly
significant difference test (Tukey’s HSD) with α = 0.05
and Bonferroni correction as post hoc analysis. Further, we
explored details of participants’ qualitative responses to find
additional potential insights into the effects of counterfactual
visualizations.

Figure 4. The box plots show correctness rates for each
visualized subset group for tasks T1 (a) and T2 (b).

Recognizing Association
Our results for task T1 support H1: we found that additional
visualized subsets do not have an obvious negative impact on
users’ recognition ability.

During this task, users were asked to focus on findings
from the data shown in the IN subset chart. Our analysis
shows that there is no significant impact between the
visualized subsets and users’ recognition results for the
number of findings and correctness rate. We found users
always responded to similar findings for the same dataset.
For example, in the CO2 emission dataset62, one user
answered “The CO2 emission goes higher and then reaches
peak in 10-ish years and goes down.” after seeing the IN
group and another user answered “The emissions subsequent
climb through the end point of 2010, and then slowly go back
down.” after seeing the CF group. Additionally, the overall
correctness rate is near 100% regardless of visualization
type, as shown in Figure 4 (a).

Understanding Intervention
Our results for T2 may also support H2: counterfactual
visualizations could improve users’ interpretation of inter-
ventions behind data variables.

No overall significant difference was found between
visualized subsets for users’ correctness rate when predicting
changes to a variable after manipulating another variable.
Figure 4 (b) shows the correctness rate of users’ predictions
based on subset visualization type. Although the overall
statistical significance was not found at the 0.05 level, a
higher average correctness rate for the CF group (IN + CF
+ REM) was observed visually, as was a larger variance for
the EX group.

We therefore further explored the statistical significance at
a more fine-grained level. We found a significant difference
(p = 0.01, η2 = 0.07) when only comparing the results from
the IN and CF groups. It could suggest that counterfactuals
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may have the potential to communicate variable relations
more effectively for users by comparing against the IN
subset, whereas the EX subset may introduce more random
effects to such judgments. Further study is necessary to
confirm or deny these relationships, however.

Analyzing Causality
Our results for T3 support H3: we found that counterfactual
visualizations significantly improved users’ analysis of
causalities.

Our analysis reveals a significant impact between
visualized subsets and users’ overall correctness rate of
causality results (F (2, 24) = 8.71, p = 0.001, η2 = 0.12).
Other than the correctness rate, we further evaluated the
results using a relative impact ratio; the relative impact ratio
r for user i for a specific question x is defined as:

ri(x) =
Numi(x)

max
j∈users

(Numj(x))
, (1)

where Numi(x) is the number of correct predictions in user
i’s response and max

j∈users
(Numj(x)) refers to the maximum

number of correct predictions made among every user that
answered this question.

Figure 5. The box plots show correctness rates (a) and relative
impact ratios (b) of each visualized subset group for task T3.

Figure 5 shows the results for correctness rate and relative
impact ratio per visualized subset group. Counterfactual
visualizations achieved the highest average correctness
(Figure 5 (a)) and relative impact ratio (Figure 5 (b)). The
distribution of the CF group’s results is also more compact
compared to the EX group, implying that counterfactuals
may be able to improve user’s causal inference, whereas the
EX group may in fact be a hindrance (similar to the results
of T2 in Figure 4). Although we do not specifically test these
hypotheses in our study, our results could provide guidance
on which combinations of data subsets to present to users.

Recall
Our results for task T4 support H4: we found that
counterfactual visualizations led to better recall rates for
users.

We recognized all responses linked to a specific dataset as
a successful recall; descriptions that could not be associated
with a specific dataset were not recognized as a recall.
For example, one user said “I remember poor countries
with life expectancy vs money,” which was recognized as
a recall because it could be directly linked to the life

expectancy dataset63, while another user said “I remember
the scatterplots which are easiest to use when visualizing
data,” which we did not recognize as a recall because it could
not be associated with a specific dataset.

We found a significant impact between visualized
subsets and users’ recall of datasets (F (2, 24) = 1.12, p <
.0001, η2 = 0.36). Figure 6 shows the average recalled
numbers of datasets per visualized subset group.

Figure 6. The violin plots show the numbers of recalls per
visualized subset group type.

As shown in Figure 6, the CF (avg. 1.78 per user) group
had a higher average number of recalls, followed by EX (avg.
0.69 per user) and IN (avg. 0.38 per user). This finding could
be due to counterfactuals causing users to perform a more
careful causal analysis of data10. The effect could also be due
to the additional information (for both EX and CF groups),
which is in line with findings from Borkin et al. 45.

Exploratory Analysis
To better analyze other potential impacts in our study, we
conducted an exploratory analysis using Tukey’s HSD with
Bonferroni correction of the other evaluation metrics and
random covariates. Here we report significant results from
this analysis.

Table 3. The average response time (seconds) per visualized
subset group type for T2 and T3.

Visualized Subset Group IN EX CF

Response Time for T2 (sec) 72 117 155

Response Time for T3 (sec) 131 170 232

First, we report that counterfactuals led to an impact on
the response time for users. Our results reveal significant
impacts on tasks T2 (F (2, 24) = 29.56, p < .0001, η2 =
0.51) and T3 (F (2, 24) = 36.44, p < .0001, η2 = 0.47) of
visualized subset types on the response time. Table 3
provides the average response time of T2 and T3 for the
three visualized subset groups. This finding indicates that
visualizing counterfactuals may lead to longer response and
analysis times for users in reading charts. We assume this
is because the CF group introduced additional charts and
information which require users to think deeply and more
carefully compared to the original IN group10. However,
future work should be conducted more systematically to
assess this hypothesis.

In addition, we found most of the users’ reported
confidences are at a moderate level, but they varied for both
visualized subsets and chart types. The results in Figure 7
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Figure 7. The violin plots show the confidence (reported on a
5-point Likert scale) per visualized subset group for T2 (a) and
T3 (b) and per chart type for T2 (c) and T3 (d).

(a) and (b) show users’ average confidence per visualized
subset group when answering T2 and T3 and reveal that
the CF group got the highest average confidence compared
to the other two groups for both tasks. This finding is
consistent with the above analysis of these tasks where
we found counterfactual visualizations would lead to better
performance in T2 and T3. It also indicates users’ average
confidence for T2 is higher than T3 which is consistent
with the proposed causality comprehension model, implying
that T3 requires a higher level of comprehension than T2
(Modeling Causality Comprehension). However, our users
also provided additional feedback about how counterfactuals
may sometimes reduce their original confidence, which is
consistent with10. See User Feedback for details.

Figure 7 (c) and (d) indicate that users’ confidence for
both T2 and T3 is lower for scatterplots compared to bar
and line charts. This finding is consistent with previous
work investigating causality illusions, which found that
users provided weaker causality ratings for scatterplots
than bar charts11. However, this finding shows that high
user confidence did not necessarily indicate improved
performance and this phenomenon needs to be studied in
more detail.

Figure 8. The violin plots show the correct-confidence per
chart type for T2 (a) and T3 (b) and the incorrect-confidence per
chart type for T2 (c) and T3 (d).

To better explore the inverse relationship between users’
confidence and performance, we further computed and
evaluated correct-confidence and incorrect-confidence to
measure how users’ confidence aligns with their correct
and incorrect responses. The correct-confidence is users’
confidence in correct responses while incorrect-confidence
refers to confidence in incorrect responses, as shown in
Figure 8. The results indicate that the differences in correct-
confidence in the three chart types do not vary much (see
Figure 8 (a) and (b)). However, the incorrect-confidence
of scatterplots is noticeably lower than the other two chart
types (see Figure 8 (c) and (d)). This finding reveals that the
relatively low confidence of scatterplots might be explained
by correctly having low confidence in incorrect causal
inferences. Thus scatterplots may be positively correlated to
the strength of causal evidence behind data, i.e., users would
have higher confidence for more significant causal evidence
and lower confidence for less significant causal evidence.
These impacts may also be related to the aggregation level
of visual design11 which was not considered in our study.
Future work should explore these differences in more detail.

User Feedback
In addition, we reported a crucial insight into decision-
making uncertainty from participants’ feedback. By sum-
marizing participant feedback regarding chart-reading strate-
gies, most users reported that counterfactuals were helpful
in finding implicit causal relationships and reasoning about
hypothetical scenarios. However, we also found potential
limitations to counterfactuals.

Figure 9 shows a conceptual model illustrating how
a number of participants described their decision-making
strategy and process. During the study, participants might
generate multiple original inferences when looking at the
IN chart, where they cannot verify which is correct, but
may make an assumption or have a preference among
these inferences. In most cases, when looking at the CF
chart, they are then able to confirm or reject the original
assumptions. However, users felt that sometimes the CF chart
might “muddy the waters,” adding additional information
that could be difficult to reconcile with their previous
assumptions, and potentially leading to confusion and lack
of confidence. Additionally, users also mentioned that the
current study lacks explorations of the whole dataset, due to
visualizing sets of static charts, which made their decision-
making more difficult.

This situation is similar to the impact of users’ decision-
making uncertainty found in previous research64–66, while an
ideal causal inference process should be able to convey the
most correct possible decision and reduce users’ uncertainty.
The proposed conceptual model could also be helpful to
explain how counterfactuals can counter Simpson’s paradox
in one-dimensional datasets67, in which case users may have
only one inference initially, and visualizing counterfactuals
can counter the inference that a paradox exists. However,
since the evidence for causality is uncertain, increasing
uncertainty may also be desirable. Thus, further analysis is
necessary to understand the cognitive processes involved in
decision-making in the context of uncertainty and causal
inference.
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Figure 9. Proposed uncertainty-aware decision-making flow
based on participants’ reports. The top arrow shows that users
may make three inferences A, B, and C when looking at the IN
chart, but may not immediately determine which one is the most
likely. The bottom arrow indicates that after looking at the CF
charts, it could be possible that the strength of users’ inference
B is increased while inferences A and C are decreased.

In summary, our study results offer evidence largely con-
firming our proposed hypotheses, and provide preliminary
findings of the impact of visualizing counterfactuals, thus
providing insights to support the proposed causality compre-
hension model in Modeling Causality Comprehension.

Discussion
Our study primarily evaluated the impact of counterfactual
visualizations in helping people understand data at different
communication levels. Our results offer a new perspective on
findings from prior studies and provide preliminary design
guidance and actionable insights for future research.

Critical Reflection Within the Context of Prior
Studies
Our study demonstrates that integrating counterfactual
information with visualization can significantly improve
users’ interpretation of complex datasets, enabling them to
operate at a higher data communication and causal inference
level. Next, we discuss the connections between our reported
results and insights from prior studies.

Our first major finding reported that counterfactuals do
no harm with respect to users’ ability to recognize relevant
features in visualizations. This is consistent with Kaul et
al.’s study 10 where they showed that counterfactuals neither
decreased the performance of a visual analytic system nor
did they negatively impact user experience. Similarly, Kale
et al.12 did not find obvious differences in performance when
conducting causal inferences with different charts.

Further, our results demonstrate that counterfactuals
can significantly help people understand associations and
analyze causalities within data. This finding can be
connected with some related insights. Kaul et al.10 found
that counterfactual visualizations significantly impact users’
inferences drawn from charts. Our results confirm such
beneficial impacts. Xiong et al.11 found that for the
same dataset, different visualization choices could result
in differences in users’ causal inferences, and that some
visualizations could trigger stronger causal relations. Our
results confirm that cognitive reasoning affordances vary
for both visualized subsets and chart types, and visualizing
counterfactuals can improve users’ causal reasoning.

Additionally, our findings indicate that visualizing
counterfactuals can help with dataset recall. By treating
counterfactual information as additions to the original
visualization, this finding could be consistent with the
guidelines from Borkin et al.45, in which they found that
additional encodings can improve the effectiveness of visual
data communication.

We also reported specific insights about task completion
time, chart types, and users’ confidence. Our finding about
completion time confirmed the previous assumption that
counterfactual visualizations could be more complex for
users to understand10. This finding also fits with traditional
graphical perception problems19,22,68, where users spend
more time understanding as chart complexity increases.
However, this may not necessarily be a negative if taking a
longer time leads to more correct inferences, as indicated by
existing work on cognitive load and memorability69.

Finally, our results also suggest that there may be
performance differences among chart types. Overall,
scatterplots may afford improved causal inferences vs.
bar or line charts. This finding fits with previous
studies showing that scatterplots may better convey causal
relationships in datasets16, and can more effectively
communicate correlations70. Combined with the results of
both performance and confidence, our results additionally
show that compared to bar and line charts, users’ confidence
with scatterplots was more closely aligned with the strength
of causal evidence (i.e., positively correlated to their causal
inference performance).

Some existing studies, however, also show that scatterplots
might convey more uncertainty and be sensitive to
different visual encodings71,72, and uncertainty may lead to
poor decision-making performances65,73. Similarly, users’
feedback reported in User Feedback provided some
possibilities about how CF could impact uncertainty in their
decision-making. Our study was not designed to investigate
the impact of uncertainties in decision-making, however, so
this relationship needs to be further explored.

Design Implications for Counterfactual
Visualizations
Compared to previous work10, our results go farther
in providing preliminary insights about how visualizing
counterfactuals effectively can help with data interpretation.
Additionally, we extended previous work on visual causal
inference11,12, connecting causal inference to multiple data
communication levels. In this way, our results indicate
preliminary guidelines for how to use counterfactuals:

• Visualize counterfactual subsets to convey causalities
in datasets.
Our study indicates that people can infer causal rela-
tions using counterfactual subset visualization, achiev-
ing better performance than showing the IN chart only,
as described in Results. In real-world applications,
however, counterfactuals have mostly been conveyed
via natural language74. We therefore recommend that
designers consider showing counterfactual subsets of
data simultaneously with the originally designed chart,
if their design objectives include helping their audi-
ence find important causalities in the data.
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• Use less scalable visualization types to help convey
causality.
As shown in Exploratory Analysis, our exploratory
analysis on chart types suggests that there may
be evidence that the scalability of charts might
impact causal inference. Combined with prior similar
findings about the impact of aggregation levels11 and
rankings70, we anticipate that users might be able
to find more causalities in less scalable chart types.
Thus, we would recommend designers consider using
charts with less scalability if they’re unsure about the
visualization choices for datasets containing complex
causalities. Specifically, our results in Exploratory
Analysis indicate that scatterplots can be positively
correlated to the strength of causal evidence within
datasets.

Study Limitations
Our study was able to evaluate the impact of visualizing
counterfactuals for visual data communication using static
charts. Some limitations of the study are discussed below.

First, the hypotheses and task designs of our study are
primarily based on the proposed causality comprehension
model. The study results provide some support for this
model, but further research is required to explore how
broadly the preliminary model can be applied across
a wider range of scenarios. For example, although we
have connected important insights from causal inference
and human cognition in visual data communication, other
possible impact factors also exist, such as how the potential
uncertainty within visualizing counterfactuals will impact
users’ decision-making75,76.

Second, we focused primarily on analyzing whether
counterfactuals can help, but do not address what constitutes
a “good” counterfactual subset. Different aggregations
and selections of data subsets may significantly impact
the performance77,78 and introduce potential bias79–82 in
exploratory analysis. We adopted the basic counterfactual
generation method from previous work10, and did not
explore any parameter adjustments for creating the
counterfactual subset, thus limiting our findings with respect
to the impact of visualizing different counterfactual subsets.

Meanwhile, our study employed the IN chart as a typical
visualization, along with counterfactual (IN + CF + REM)
and control (IN + EX) groups as comprehensive views
of the whole dataset. However, these visualizations show
different numbers of charts which may also impact users’
perception results. Additionally, we studied only three
basic static visualization types: bar, line, and scatterplot
charts. We did not evaluate user understanding of more
complex visual designs, such as interactive dashboards and
graph representations such as Bayesian Belief Networks42

that aim to capture multidimensional probabilistic causal
relations. Such interfaces and data representations can be
challenging to evaluate83,84, and can include different chart
aggregation levels and multidimensional relations, which
might complicate the analysis of perceived causality11.

Additionally, our evaluation employs measures like
correctness rate and a number of findings that are usually
applied in low-level task evaluation. However, a limitation
common to our work and most existing studies is the lack of

a ground truth of human perception of causal relations among
variables within datasets, which makes it unclear whether
users really judge correlation or causation. Unlike most
traditional visualization tasks such as identifying the number
of classes, a user’s causal inference is subjective, which
means even for the same pair of variables, different people
may have different inference criteria. In addition, user
performance for causal inference could also be evaluated
by higher-level measures. For example, the designers’
objectives would significantly impact users’ comprehension,
such as information aesthetics and clarity85. Further, many
other aspects such as individual cognitive factors and
personality psychology would have a crucial influence
on high-level visual understanding86. In addition, our
participant recruitment was biased toward users attending
university, who may be more familiar with statistics and
visualizations than a more general population.

Moreover, Kale et al.12 reported users’ causal inferences
with common visualizations do not perform significantly
better than those visualizing textual contingency tables.
However, our work and several existing visual analytics
systems8–10,39–41 show that visualization of counterfactual
and causal relations would benefit users’ interpretation and
analyses of data. We anticipate that this finding could be
impacted by the types of chosen charts and the representation
of causal information. It might also be related to the
scalability of charts, where scatterplots usually are less
scalable and can represent lower variance70,87,88. However,
this difference definitely needs to be further studied to get a
more concrete answer.

Future Opportunities
Based on the aforementioned limitations, it is necessary to
assess counterfactual visualizations with more evaluation.
This includes understanding metrics such as decision-
making uncertainty (as shown in User Feedback), a wider
variety of, and control over, counterfactual subset selection
criteria, and more complex visual encodings and chart
designs such as network-based representations. We plan to
conduct further experiments to understand how different
parameters for specifying counterfactual subsets would
impact users’ interpretations. We hope to design different
counterfactual visualization techniques that can the show
same amount of data samples but with different numbers
of charts to further explore the impact of the number of
charts on users’ perceptions in the future. We also would
like to design more reliable evaluation measures, considering
designers’ objectives, and extend our study to include a
broader population.

In addition, to provide clearer justifications for partici-
pants’ interpretations of causal relations within datasets, we
further plan to conduct a large-scale study judging common
inference results across diverse populations for causal infer-
ence questions. Results from such studies could potentially
provide a ground truth corpus of causal relations of data
variables that would not only benefit counterfactual studies,
but also work as baselines for more diverse causality-related
empirical experiments.

Further, according to our current results, it would be
reasonable to assume that visualizing counterfactuals can
significantly benefit people’s ability to conduct exploratory
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data analysis. As a consequence, we hope to explore how
users will use and interpret counterfactuals and whether
they fit our causality comprehension model for exploratory
tasks in interactive visualization systems. Additionally, our
study focused on how users can find causalities, but lacked
an understanding of how counterfactuals can guard against
making false assumptions of causality, although this is
hinted at by the incorrect-confidence result for scatterplots in
Exploratory Analysis. Future work should explore this area
of counterfactual visualization more thoroughly.

Our results suggest that low-level data communication
is not obviously impacted by counterfactuals, as all subset
visualization groups achieved an overall high accuracy rate
in T1. However, existing findings indicate that demographics
can influence the accuracy of understanding associations,
such as in climate change visual analytics89. Future work
could further investigate the impact of users’ demographics
in understanding counterfactuals for more complicated tasks
with lower overall correctness rates.

In addition, visualization recommendation and insight
characterization methods90–92 have already been a fruitful
and insightful research topic. However, unlike with NLP
models, it remains difficult to apply those methods in real-
world applications93,94. In the future, we would like to extend
counterfactuals into more complex application scenarios,
distill empirically supported counterfactual generation meth-
ods, and explore the possibilities for applying counterfactu-
als in visualization recommendations to provide causality-
enhanced insights.

Conclusion
In this paper, we proposed a method to model the com-
prehension of causalities from visualizations by combin-
ing causal inference theory and cognitive processes of the
visual data communication framework. We explored how
counterfactuals impacted people’s ability to understand data
at different levels for static visualizations via a user study.
Our results indicate that people can interpret and infer rela-
tions with counterfactuals. We provide preliminary evidence
that visualizing counterfactuals can improve performance
in understanding interventions, analyzing causalities, and
recalling features of datasets. Based on the results evaluation,
we discussed the connections and reflections between our
results and prior findings to explore more insights. We
further derived design implications for using counterfactuals
in visualizations. We believe our findings could benefit a
broad range of visual comprehension demands and tasks,
and we hope our work will inform further studies to explore
further detailed guidance on how to use and interpret coun-
terfactuals.
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