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Abstract
Data visualizations typically show a representation of a dataset with little to no focus on the
repeatability or generalizability of the displayed trends and patterns. However, insights gleaned from
these visualizations are often used as the basis for decisions about future events. Visualizations of
retrospective data therefore often serve as “visual predictive models.” However, this visual predictive
model approach can lead to invalid inferences. In this paper, we describe an approach to visual
model validation called Inline Replication (IR). IR is closely related to the statistical techniques of
bootstrap sampling and cross-validation and, like those methods, provides a nonparametric and
broadly applicable technique for assessing the variance of findings from visualizations. This paper
describes the overall IR process and outlines how it can be integrated into both traditional and
emerging “big data” visualization pipelines. It also provides examples of how IR can be integrated
into common visualization techniques such as bar charts and linear regression lines. Results from
an empirical evaluation of the technique and two prototype IR-based visual analysis systems are
also described. The empirical evaluation demonstrates the impact of IR under different conditions,
showing that both (1) the level of partitioning, and (2) the approach to aggregation have a major
influence over its behavior. The results highlight the tradeoffs in choosing IR parameters, but suggest
that using n = 5 partitions is a reasonable default.
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Introduction
Visualization tools are most often designed to depict the entirety of a dataset–subject to a set of filters
applied to focus the analysis–as accurately as possible. In this typical pattern, the goal is to provide the
user with an accurate understanding of all of the data in the underlying dataset that matches the active set
of filters. This ethos was captured, perhaps most famously, in Shneiderman’s Visual Information Seeking
Mantra: overview first, zoom and filter, then details-on-demand.1 Variations of this basic approach have
since been adopted in most modern visualization systems.

The foundations for these systems are visual mappings that specify a graphical representation for the
underlying data. For small and low-dimensional datasets, these mappings can be direct (e.g., a scatter plot
for a small 2D dataset). As problems grow in data size or dimensionality, algorithmic data transformation
methods can be used to filter, manipulate, and summarize raw data into a more easily visualized form.

On top of these mappings, interactive controls are often provided to give users even more flexibility to
filter or zoom to specific subsets of data. These interactions can be linked to more detailed information
about data objects, such as via levels-of-detail or multiple coordinated views. The result, when well
designed, is an effective visual interface for data exploration and insight discovery.

For this reason, these steps form the core stages of the canonical visualization pipeline.2;3 This
approach can be enormously informative, and has led to advancements in how people seek to understand
information across a wide range of domains, such as helping computer users navigate through large file
systems, visualizing medical records to help doctors understand patient histories, and visualizing weather
data to identify regions most impacted by a recent storm.

Critically, these visualization use cases are all retrospective in nature. More specifically, they employ
visualizations that attempt to faithfully report data exactly as it was observed. Users aim to see an
overview of the entirety of a given dataset. If a user applies constraints to focus the visual investigation
(e.g., via zoom and filter), the visualization is expected to show the full set of data that satisfies the applied
constraints.

In many visualization scenarios, however, users are in fact more interested in conducting prospective
analysis: using visualizations of these historical data to reason about future or not-yet-observed data.
For example, medical experts examining data for a cohort of patients might be most interested in what
treatments would work best for a future patient with similar characteristics. Visualizations of historical
sports statistics are often used to inform strategic decisions that are used in upcoming competitions.
Financial visualization tools are often used to inform future investment decisions. In each of these use
cases, visualizations of historical data are used to inform future decisions. For such prospective analysis
tasks, these retrospective visual depictions of the data are often used, in essence, as naı̈ve visual predictive
models, with the assumption that visualizations of historical data can be used to infer or predict future
observations. In many ways, these visual models are analogous to statistical models developed during
statistical analyses, from which users often also attempt to predict future observations.

In many cases retrospective representations are indeed very informative. However, just like
the underlying descriptive statistics that such visualizations often depict,4 traditional retrospective
visualizations often provide insufficient evidence for making predictive inferences, even as the visual
depiction itself might be especially suggestive for making such inferences. In many cases, the trends
and patterns that a visualization of retrospective data presents to a user may be artifacts of noise and
expected randomness within the underlying data. For users to make valid inferences or predictions based
on historical data, a more nuanced understanding of the data being visualized is required.
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This critical gap between (a) retrospective visualization designs and (b) the predictive requirements of
many users has been recognized within the visualization community.5 Some have attempted to bridge
this gap by adding support for inferential statistics within the visualization. Typically, this approach
combines carefully designed statistical models with visualizations of the model’s results. For example,
visualizations can be instrumented to estimate and display uncertainty, confidence intervals, or statistical
significance. Alternatively, predictive modeling methods can be used to generate additional data, with the
predictions themselves being incorporated into the visualization. These systems go beyond traditional
descriptive reporting, but typically require a careful and sometimes onerous focus on modeling, including
estimating underlying statistical distributions, which is incompatible with many applications for which a
more accurate assessment of the repeatability of a given visualization would be useful.

This paper presents Inline Replication (IR), an alternative approach to enabling inferential
interpretation that is designed to overcome the above challenges. We introduce a partition function within
the visualization pipeline to produce multiple folds for each visualized data subset. Metric functions are
applied to each fold, and an aggregation function combines the individual measures prior to visualization.
Interaction techniques enable users to examine both aggregate and individual fold metric values.

Our method is motivated by the bootstrap sampling and cross-validation techniques used widely in
the statistics and machine learning communities. The IR approach is nonparametric, making it easy to
apply and use generically within a visualization system without arduous modeling or assumptions about
distribution parameters. IR integrates easily with the standard visualization pipeline, and is also ideal
for use in large-scale visualization systems where progressive or sample-based approaches are required.
Finally, our method provides users with validation information that is both intuitive and easy to interpret.∗

The remainder of this paper is organized as follows. It begins with a review of related work, then
describes the details of the IR methodology. After that we present an experiment that aims to test the
accuracy of such method against traditional statistical analysis. We then share example results from a
variety of proof-of-concept systems that include the IR technique. These examples range from simple bar
charts to more sophisticated interactive visualizations of large-scale event data collections.7 The paper
concludes with a discussion of limitations and outlines key areas for future work.

Related Work
The IR approach to visual model validation is informed by advances in several different areas of
research. These include the topics of uncertainty, predictive visualization, and progressive or incremental
visualization. Also relevant are visualization systems that utilize inferential statistics methods and
conceptual models of the visualization pipeline.

Visualization of Uncertainty
The visualization of uncertainty has been an active research area within the visualization community
for many years. Studies have explored the problem from many perspectives, including developing
taxonomies that have examined types of uncertainty8 as well as visualization methods for conveying

∗This article includes material described in a pre-print that has released by the authors via arXiv 6. This version of the article is
heavily revised and contains an entirely new evaluation section describing and analyzing results from a set of empirical experiments
to test the behavior of IR under various conditions.
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uncertainty.9 In addition, there have been many efforts to formally study alternative methods for depicting
uncertainty measures10–12 through user studies that explore the perceptual understanding of various
uncertainty representations. However, these studies focus on the visual representation rather than methods
for determining the degree of uncertainty.

Perhaps most relevant to the IR approach proposed in this paper is work that has focused on estimating
uncertainty via measures of entropy within a dataset rather than by using carefully constructed statistical
models.13 Compatible with IR, this work proposes using entropy as a non-parametric measure of
uncertainty for categorical data which does not require formal modeling nor make assumptions about
specific distributions within the data. IR provides a broader and more general framework for this
approach, within which the entropy metric could be easily adopted.

In other work, the distinction between the “visualization of uncertainty” and “the uncertainty of
visualization” has been highlighted.14 The latter is a related but separate concept from traditional
uncertainty visualization. Such work highlights that the rendered graphics of a visualization can convey
a sense of authority which may not be warranted, even when the underlying data itself is considered to be
beyond reproach. This challenge is a key motivation for IR, especially with respect to the confidence of
the user in making predictions based on this unwarranted authority, as outlined in the discussion presented
in the Section “Visualization as a Predictive Model.”

Finally, we distinguish IR’s focus on variation of data over partitions to challenges related to non-
representative samples. Non-representiveness and selection bias are important threats to visualization
validity,15 and recent research has proposed methods to address these challenges within the context of
interactive exploratory visualization.16;17 IR can complement these methods, but focuses on issues of
variation rather than representativeness.

Predictive Visual Analytics
Visualization has long been used to support predictive analysis tasks. However, most often, the
“prediction” is performed by users reviewing historical data and making assumptions about what might
happen in the future for similar situations. In fact, the relatively limited history of work on visualizations
that incorporate more formal predictive modeling methods was the topic for a workshop at a recent IEEE
VIS Conference.5

The work that does exist in this area has often focused on model development and evaluation rather
than supporting end users’ predictive analysis tasks. For example, BaobabView18 supported interactive
construction and evaluation of decision trees. More recent work has focused on building and evaluating
regression models.19 This method, like ours, adopts a partition-based approach to avoid making structural
assumptions about the data. However, the focus on building regression models leads to an overall
workflow that is very different from the proposed IR approach.

Others have focused on visualizing the output produced by predictive models. For example, Gosink et
al. have visualized prediction uncertainty based on formalized ensembles of multiple predictors.20 This
approach, however, requires careful modeling to develop the predictors, including the specification of
priors that enables the Bayesian method that they propose.

Outside the visualization literature, where novel visual or interaction methods are not a concern,
predictive features are typically visualized using traditional statistical graphics, for example, systems
that visually prioritize and threshold p-values to rank features for prediction (e.g., Sipes et al.21). Such
methods are fully compatible with the IR process proposed in this paper.
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Progressive/Incremental Visualization
Model overfitting and other sampling challenges are common to “Big Data” visualizations that rely on
progressive or incremental techniques (e.g., Fisher et al.22 and Stolper et al.23). Initial samples are small,
grow over time, and can change in distribution as time proceeds. Some have addressed this challenge
by including confidence intervals along with partial sets of query results.24 However, relying on the
query platform to assess confidence in data subsets does not easily support interactive zoom and filter
operations after the query, because these changes in visual focus do not necessarily result in new queries
that generate new result sets. Moreover, these papers do not propose methods for computing confidence
intervals, but rather, assume that such data will be provided by the the database.

Inferential Statistics
Statistical inference is a discipline with a very long and distinguished history. Most relevant to the IR
method described in this paper are challenges related to statistical significance and null hypotheses, and
in particular Type 1 and Type 2 errors. Type 1 errors refer to improper rejections of the null hypothesis
which lead to conclusions that are not real effects, while Type 2 errors refer to falsely retaining the null
hypothesis which can lead to assumptions that a true effect is false.25

These types of errors are of critical concern in high-dimensional exploratory visualization where
computational methods can quickly assess vast numbers of dimensions for statistical significance.
Statistical correction methods have been proposed to reduce Type 1 errors,26 but arguments have
also been made against such approaches. Those arguments suggest that parameterized models or
assumptions of “default” null hypotheses don’t match real world situations where distributions are rarely
straightforward or independent. Suggesting that these correction methods are the wrong approach for
exploratory work, Rothman argues that “scientists should not be so reluctant to explore leads that may
turn out to be wrong that they penalize themselves by missing possibly important findings.”27

This tension is present in many interactive exploratory systems which make it easy to generate vast
numbers of potential hypotheses. As a result, a wide range of methods have been proposed for modeling
measures of confidence or significance.28–30 These efforts, however, typically rely on formal statistical
methods that make assumptions about distributions and variable independence. For example, confidence
intervals have some conceptual similarities to IR. However, calculating a confidence interval requires
assumptions about underlying distributions of the data and knowledge of key distribution parameters
such as mean and variance. Such approaches are problematic for exploratory visualizations which enable
users to rapidly apply filters or constraints that can quickly change the underlying assumptions. The IR
method we propose enables users to visually assess the reliability of hypotheses, providing a high degree
of flexibility. Similar approaches that rely on user judgment have been shown to be quite effective.31;32

Models of the Visualization Pipeline
The traditional visualization pipeline model describes the process of transforming raw data first to
an analytical abstraction, then to a visualization abstraction, and finally to a rendered graphic for
interaction.2;3 We add partitioning and aggregation stages to support the IR approach. As we will
describe, a special case of the IR model (with just one partition) is equivalent to the traditional model. By
extending the canonical pipeline, our work has similarities with Correa et al.’s paper describing pipeline
extensions for an uncertainty framework focused on the data transformation process.33 However, unlike
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Figure 1. Roulette wheels allow users to bet on “black” or “red” squares. Casinos often display a simple
visualization of “recent spins” to provide gamblers with a false sense of predictive knowledge. In this example,
the display shows a recent preponderance of black numbers with the implication to gamblers that this may
influence future spins of the wheel.

Correa at al., IR proposes a different set of extensions which adopt an empirical approach rather than
assuming a Gaussian or any other formal error model.

Visualization as a Predictive Model
Visualization design is often conceptualized as a mechanism for reporting. This retrospective approach
is so ubiquitous that terms such as prediction, forecast, and inference cannot be found within the indices
of many leading visualization texts from the past 25 years.34–36

Many visualization consumers, however, use graphical representations of historical data as the basis
for decisions about future performance. This is done even when the underlying data and transformations
do not support such prospective conclusions. Despite potentially fatal flaws in terms of generalizability
and repeatability, retrospective visualizations are in essence being used as predictive models.

The tendency to assume predictive power in visualization can be seen, for example, in modern casinos.
Roulette wheels commonly include an electronic display37 which shows the table’s recent history.
Assuming a fair table, “red” and “black” numbers should be equally likely to appear. However, as
illustrated in Figure 1, the history provided to gamblers is not sufficiently long to learn if the table has
any systemic bias.

Why then is the gambler presented with a simple visualization of the history? The data is visualized
to provide gamblers with a false sense of knowledge; to suggest to a hesitant gambler that a bet is an
informed decision rather than a random choice. A gambler may infer that the recent streak of black
suggests more black spins will soon appear. Alternatively, the gambler may infer an imminent return to
red. To the casino, it does not matter what predictive inference is drawn as long as it provides a false
confidence that leads to increased betting.

It is tempting to dismiss this scenario as one in which the gambler should be more informed about
basic statistics. The small sample size and the independence of each roulette spin should make it clear
that the display is not especially informative. However, relatively sophisticated users performing visual
analysis of data from more complex systems can make similarly poor predictive assessments on the basis
of visual representations that don’t properly convey the underlying limits of their predictive power.
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For example, consider a business analyst attempting to learn about why sales are declining, or a
physician using historical patient data to compare treatment efficacy. In these complex real-world cases,
in which it is essentially impossible to fully understand the underlying statistical processes, it is natural for
analysts to turn to visualization as a predictive model for their problem. Visualization enables these users
to see what has happened and, based on trends or patterns in the visual representation, make assumptions
about what will happen in the future.

However, just as the casino gambler draws inference from a not-so-meaningful visualization, these
power users can be led to make poor predictions on the basis of visualizations that are essentially “overfit”
models based on poor visual representations of the underlying process. This problem has even been
documented in highly quantitative fields such as epidemiology, where public health analysts have had
trouble discounting statistics from small sample sizes when visualized.38

Issues of poor sampling and overfitting are especially problematic during exploratory visualization in
which users can interactively apply arbitrary combinations of filters to produce new ad hoc subsets of data
for visualization. Such systems are at greater risk of generating misleading visualizations that occur “by
chance” rather than due to real properties of the underlying problem.39 The same is true for visualization
systems that use sampled or progressive queries to address issues of scale.

The potential for this sort of “visual model overfitting” is analogous to the overfitting problem in
more traditional modeling tasks. In the machine learning community, this is addressed in part by cross-
validation, a widely used technique for assessing the quality and generalizability of a model.40 Rather
than relying on a single model solution, cross-validation methods create and compare multiple solutions,
one for each of several partitions of a dataset (often called “folds”). This enables an assessment of model
repeatability, with models that work consistently across partitions considered more trustworthy. Similarly,
bootstrap sampling techniques in statistics41 produce multiple samples from a single set of observations
in order to derive better estimates of the original sample’s statistical properties.

If one considers—as we argue here—that a visualization is often used as a form of predictive model,
then validation becomes a critical guard against problems associated with visual model overfitting. When
a visualization is zoomed and filtered to focus on a specific subset, is the visual representation repeatable,
or is it due to chance variation? Are the conclusions drawn from the visualization generalizable? The
IR method outlined in the next section seeks to help answer such questions by embedding an approach
similar to cross-validation and bootstrap sampling within the visualization pipeline so that each new view
produced during user interaction can be evaluated for validity.

Inline Replication
Inline Replication (IR) is an approach to visualization in which the dataset associated with each visualized
measurement is partitioned into multiple subsets, or folds, processed independently to calculate derived
statistics or metrics, then aggregated back together to be rendered in a visualization. This partitioned
approach embeds an automated and non-parametric workflow for data replication within the visualization
pipeline, as illustrated in Figure 2. The result is that visualizations based on IR can provide users with
important information about the repeatability of observed visual trends, reducing the likelihood of certain
types of erroneous conclusions.

The IR pipeline begins with the same initial step as a traditional visualization pipeline. A set of query or
filter constraints is first applied to a primary data source D to produce a focused dataset d ⊂ D. The data
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Figure 2. The Inline Replication (IR) visualization pipeline sends each derived measure’s subset of data (mi)
through a partition function to create multiple folds (fj) prior to mapping and visualization. A metric function is
applied to each fold independently, and an aggregation function recombines the folds to form an aggregate
measure (m′i) for subsequent visualization and interaction.

in d is then organized into subsets for which statistical measurements are calculated, creating measure-
specific data subsets, mi. For example, a visualization pipeline configured to generate the inset bar chart
in Figure 1, showing the distribution between black and red spins for a roulette wheel, would include the
subset mrecent containing data for the most recent spin results (black or red). If the visualization included
multiple bar charts (e.g., past 10 spins, past 100 spins, and past 1,000 spins) then multiple subsets mi

would be defined because each requires the calculation of a distinct set of measurements.
Traditionally, the data for each mi would immediately be processed to compute the measurements

required for visualization (e.g., the fraction of spins resulting in black, and the fraction of spins resulting
in red). Those measures would then be mapped to visual properties of objects within the visualization
(e.g., the size of each bar in the bar chart).

The IR pipeline, however, behaves differently. Each mi is first partitioned into a set of distinct folds, Fi,
where each fold f j

i ∈ Fi is analyzed independently via a metric function. The results are then aggregated
to form a merged dataset m′i. It is this merged representation of the measures that is mapped to the
visual representation and rendered to the screen for interaction using methods designed to convey the
repeatability of the visual model across each of the folds.

This section provides an overview of the IR pipeline, focusing on the three functions at the core of
the design: the partition function, the metric function, and the aggregation function. It then describes the
IR approach to visual display and interaction, and concludes with a discussion of useful variations to the
core design.

Partition Function
Conceptually, the partition function is designed to subdivide the data in a given measure-specific subset
mi into multiple independent partitions, or folds. These folds are used as the basis for calculating each
measurement. Later in the IR process, derived measures (e.g., proportions or statistical significance) will
be calculated for each fold.

Formally, we define the partition function as an operator that subdivides a measure-specific set of
data mi into n folds such that each fold f j

i ⊂ mi.

Partition(mi, n)→ {f0
i , f

1
i , · · · , f

j
i , · · · , f

n−1
i } (1)
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This function is applied to the raw data in mi, prior to any other aggregating transformations (such as
the summation in the roulette example). Following an approach inspired by k-fold cross-validation,40 the
baseline partition function creates n folds that are disjoint, approximately equal in size, and randomly
partitioned such that:

n−1⋃
j=0

f j
i = mi (2)

As discussed previously, multiple folds are created with the goal of supporting repeated calculations for
each measure. Increasing the value of n to produce more folds increases the replication factor. However,
higher n values also produce smaller |f j

i |. If n is too large for a given mi, the folds may be too small
to compute useful measures. Therefore, n can be dynamically determined so as to require a minimum
fold size. If mi represents a “large enough” subset of data, it will produce a full set of folds. If, however,
mi is too small for the minimum fold size, fewer than n folds will be produced. The threshold for “large
enough” depends on many factors, including the specific metrics that will be calculated.

Partitioning with n = 1 results in the identity partition function where f0
i = mi regardless of the size

of mi. Because no partitioning is performed, an IR process using the identity partition function produces
results that are identical to a traditional visualization pipeline: a single metric is calculated and visualized.
In this way, the traditional approach to visualization can be seen as a special case of the IR process
containing only one fold.

Choosing an appropriate n is necessarily a compromise between increased replication and smaller
sample size. We can look to the machine learning community for guidance, however, where empirical
studies have shown that there is no meaningful benefit for values of n over 10.40 Moreover, as datasets
grow larger in many fields, smaller sample size becomes less of a concern.

Finally, there are certain conditions (e.g., very small datasets with little data to partition, or very large
datasets where sampled queries are required) where the basic formulation for the partition function can
be problematic. Variations to the partitioning process, designed to help address these challenges of scale,
are discussed in Section “Variations.”

To illustrate the partitioning process, consider the roulette example from earlier in this paper. The
example bar chart showing the fraction of spins resulting in black or red is based on a single measure-
specific subset of data mrecent. The partition function would be applied to this subset to create a
set of multiple folds, each of which would contain a subset of the recent spin results. For example,
Partition(mrecent, 5) would produce a set of five folds, each containing results from roughly one-fifth
of the overall set of recent spins.

Metric Function
The folds produced during partitioning are sent to a metric function which is applied independently to
each fold as illustrated in Figure 2. The metric function computes derived statistics sji for each fold f j

i .
These derived statistics (one sji for each of the n folds f j

i ) can then be aggregated and compared during
the visualization rendering process.

The specific measures computed by the metric function are application specific, but could range
from simple descriptive statistics (e.g., sums, averages) to more complex analyses (e.g., classification,
regression). Generally speaking, metric functions produce the same derived values that would normally
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be computed as part of a more traditional visualization process. The key difference in IR is that the
metrics are computed n times for each mi (once for each fold), where traditionally such values would be
computed just once. We also note that multiple statistics might be computed for each fold. For example,
a system might compute both the average and a linear regression for each fold.

For example, consider the roulette use case described earlier. The metric function in this example
would compute the fraction of spins resulting in black and red in each fold f j

i . This fraction is the same
measure that the original bar chart is designed to display. However, with the IR approach, the metric is
calculated for each of the five folds produced by Partion(mblack, 5).

An actual implementation of IR using a similar “fraction of the population” metric function is discussed
in Section “Use Cases.” However, more sophisticated systems may adopt more advanced measures. For
example, correlation statistics, p-values, metrics of model “fit”, and regression lines are all compatible
with the IR approach. Examples of IR using linear regression, correlation, and statistical significance
testing are also described in Section “Use Cases.”

Aggregation Function
The metric function produces a set of statistical measures sji corresponding to the set of n folds f j

i that are
produced by the partition function. These multiple measures could, in principle, be visualized directly.
However, this would introduce complexity to the visual representation. Therefore, prior to visualization,
the multiple sji metrics can be aggregated to a single representation m′i, inverting the partition process
to produce a simple aggregate summary. We note that the detailed sji metric values are retained in this
process and can be made visible through the visualization via unfolding as described in the next section.
As illustrated in Figure 2, the values are combined via an aggregation function which we define as
follows.

Aggregate(sji )→ m′i (3)

A variety of aggregation algorithms can be employed, with different approaches appropriate to
different types of metrics. For example, for count-based metrics which capture the frequency of data
items in each fold, a summation across all folds might be the most appropriate because a sum of counts
for each fold provides an accurate total for the overall data subset mi. For a metric that captures a mean or
rate, averaging the values across all folds may be most appropriate. For categorical metrics, meanwhile,
such as those produced by classification algorithms, a “majority vote” aggregation method42 can be
applied to capture the most frequently assigned category. The same voting approach can be used when
aggregating thresholded measures (e.g., tests of statistical significance) across all folds. This approach is
demonstrated in Section “DecisionFlow2.”

The aggregation function produces a single aggregate measure si which is derived from the set of fold-
specific measures sji . These are combined to form a merged data representation m′i = (si, {sji}) which
is then used in the mapping and rendering process of the final visualization.

As a concrete example, consider again the roulette scenario. The metric function described previously
computed the fraction of spins resulting in black and red numbers for each of the five folds created
by Partition(mrecent, 5). The aggregate rates for both colors are obtained by averaging the five fold-
specific rates. The overall average, along with the individual values for each fold, are combined to form
m′recent.
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Visual Display And Unfolding of Partition Data
Once aggregation has been performed, the merged data m′i are mapped to their corresponding visual
marks and displayed as part of the visualization, as shown in the final step in Figure 2. The IR approach
to visualizing m′i has two components, which correspond to the two distinct types of information in the
merged data structure: (a) the aggregate statistical measure, si, and (b) the individual fold measures, {sji}.

First, an initial visualization is created using only the aggregate measures. The process for this stage
is similar to a traditional visualization pipeline. The aggregate measures are mapped to visual properties
of the corresponding graphical marks, which we call aggregate marks. These marks are then rendered to
the screen for display and interaction. In the roulette example, for instance, the aggregate data for black
and red spin rates (produced by the Aggregate function) can be used to generate a basic bar chart that is
identical to what is shown in Figure 1.

Second, an IR visualization enables aggregate marks to be unfolded. An unfolding operation—
typically triggered by a user interaction event such as selection or brushing—augments the aggregate
marks with a visualization of the individual fold statistics that contribute to the aggregate measures. In
the ongoing roulette example, the fold data would show the variation in proportion of spins that result
in black and red numbers across each of the n = 5 independent folds. Additional examples from our
experimental prototypes are described in Section “Use Cases.”

Discussion
The ability to unfold aggregate measures into repeated measurements is a central contribution of the
IR approach. By graphically depicting the repeatability of a particular measure across multiple folds,
IR provides users with important and easy-to-interpret cues as to the variability of a given measure.
Traditional visualization methods do not convey this information, meaning it is often not considered
when predictive conclusions are made by users.

Another benefit of IR comes from the aggregation function. In particular, embedding within
the visualization pipeline an ability to aggregate categorical values such as statistical significance
classification can lead to more accurate results. Repeated measures combined with voting-based
aggregation can, for instance, reduce the exposure to Type 1 errors when looking for statistically
significant p-values. For example, a statistically significant (p < 0.05) run of black spins on the roulette
wheel is less likely to occur “by chance” across a majority of n folds than it is across a single group
of spins. This is a major benefit for exploratory visualization techniques that enable users to visually
“mine” through large numbers of variables searching for meaningful correlations. The results of an
experiment exploring how IR can help reduce Type 1 errors with respect to correlation are presented
in Section “Empirical Experiments.”

Variations
Following the traditional approach to k-fold cross-validation, the baseline Partition function defined in
Section “Partition Function” specifies that the constructed folds are disjoint, randomly partitioned, and
exhaustive (Equation 2). However, relaxing these constraints leads to several valuable variations to the
baseline IR procedure.

Partial Partitioning. Relaxing the requirement of Equation 2 enables the creation of partitions that
do not contain all data points within mi. For very large datasets, this can enable approximate analyses
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that use only a subset of the available data. This approach provides significant performance benefits for
metric functions that have poor scaling properties, and enables IR to work directly with recently proposed
techniques for progressive visualization.22;23

Partitioning With Replacement. Relaxing the requirement that all folds are disjoint enables
partitioning with replacement. Similar to bootstrap resampling,41 this approach enables the same data
point to be included in multiple folds (or even multiple times within the same fold). When using
replacement, the dataset in mi becomes a sample distribution from which the partitioning algorithm
can generate a larger population. This is especially useful for small datasets—a frequent occurrence in
exploratory visualization in which multiple filters can be quickly applied—because the larger generated
population can enable the IR process to run with less concern about producing fold sizes that are too
small.

Incremental Partitioning. A number of progressive or sampled methods have been proposed in recent
years to address the challenges of “Big Data” visualization.23;24 In these approaches, the full dataset mi

is often never fully retrieved. To utilize an IR approach in these cases, an incremental partitioning process
is needed. During this process, data points should be distributed to folds as they are retrieved such that
all n folds are kept roughly equal in size. This will enable IR to work with continuing improvement in
metric quality as more data arrives. However, we note that IR will not overcome selection bias that may
be introduced as part of the progressive query process. Therefore, the determination of a progressive
sampling order that is both representative and balanced remains a critical concern.

Empirical Experiments

A series of simulated data experiments were conducted to empirically measure the behavior of IR
in conditions where–unlike many real-world situations–accurate ground truth information about data
distributions was available. The experiments focused on evaluating the impact of IR with respect to
Type 1 and Type 2 errors for a common type of analysis: correlations between two datasets.

Data Generation

To simulate empirical experiments under varying conditions, two different types of base data distributions
were created as illustrated in Figure 3. These base distributions include a unimodal test case with simple
unimodal normal distributions–the typical assumption for traditional statistics–and a multimodal test case
designed to test how IR behaves when the unimodal assumption is broken–a common occurrence in real-
world datasets.

A second factor in the empirical experiments was the amount of known correlation in a dataset. The
experiment tested four levels of correlation: strong correlation (Pearson’s r = 0.61), moderate correlation
(r = 0.25), weak correlation (r = 0.1) and completely random data with no correlation (r = 0.0).

This two-by-four experimental design (two types of base distributions, four levels of correlation)
resulted in the creation of eight artificial datasets–eight D in the IR nomenclature–as summarized in
Table 1. Each D consists of 5,000 (x,y) data points drawn from the corresponding base distributions
(unimodal vs. multi-modal) to achieve the pre-determined level of correlation. These datasets served as
the starting point for the empirical experiments described below.
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Figure 3. Empirical experiments measured IR behavior under two different conditions: (a) data drawn from
simple unimodal normal distributions; and (2) data drawn from a more complex condition of two non-aligned
multi-modal Gaussian distributions. This figure illustrates the distributions from which the eight datasets used
in the empirical experiments were drawn.

Table 1. The empirical evaluation utilized eight artificially generated datasets corresponding to the two-by-four
experimental condition design of the experiments (two distribution types, four correlation levels).

Pearson Correlation Unimodal Multi-modal

Strong Correlation (r=0.61) Dstrong
uni Dstrong

mult

Medium Correlation (r=0.25) Dmed
uni Dmed

mult

Weak Correlation (r=0.1) Dweak
uni Dweak

mult

No Correlation (r=0.0) Dnone
uni Dnone

mult

Experiments
For each D, 10,000 randomized IR experimental trials were conducted for each of the 4x5x3 = 60
experimental conditions (4 settings for the number of IR folds n, 5 settings for the p-value threshold
in the metric function, and 3 settings for the type of aggregation function). The results of these trials were
then analyzed to characterize how IR behaves under the various conditions.

In each trial, 1,000 (x,y) data points were randomly sampled from D to create a focused data subset
di where i ∈ [0, 9999]. We note that while each D has a known correlation value between x and y,
the correlation for each random subset di varies due to the random sampling process. Figure 4 shows
a summary of the correlations found in the 10,000 di for each of the eight D in our experiments. As
expected, the mean correlation for each set of 10,000 di was aligned with the correlation value present in
the corresponding D. Moreover, because we aim to test only a single statistic (correlation) in each trial,
we treat each di as a single measurement-specific subset mi in the IR pipeline.

A first set of experiments was designed to explore three different parameters of the IR process. First,
IR was applied to each mi with four different n values (1, 3, 5, and 7) during partitioning. When IR is
used with n > 1, the data are randomly split into n disjoint folds. Second, the metric function applied in
the experiments was a significance test for Pearson correlation for the x and y values in each mi. This
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Figure 4. For each of the eight artificially generated datasets D, we created 10,000 randomly sampled
subsets (di) of size 1,000 to use in our experiments. Due to the random sampling process the correlation
present in each di varied slightly from the correlation in D. Each plot in this figure shows a histogram of the
correlation values for the 10,000 di, with the correlation for the corresponding D shown as a dotted black line.

was chosen because it is a commonly used metric in real-world systems, including the DecisionFlow2
system described in Section “Use Cases.” The metric calculated the Pearson correlation for each fold and
computed a p-value against the null hypothesis, h0, that the data points in the fold are not correlated.
Tests were performed at five different threshold levels (0.005, 0.01, 0.02, 0.03, and 0.04). Finally, three
different aggregation methods were used to generate m′i for each mi: (1) any-pass, in which we reject h0

if any fold passes the p-value threshold test, (2) majority vote, in which we reject h0 if more than half of
the folds pass the test, and (3) all-pass, in which we reject h0 only if all folds pass the test.

A second set of experiments was designed to characterize IR’s behavior in response to different
numbers of data points in di. The previously described experiments maintained a constant size of 1,000
for each di while (1) varying the number of folds, and (2) drawing samples for D with different levels of
correlation. In the second round of experiments, the number of folds was kept constant at n = 5 and the
samples were all drawn from a D with a correlation of r = 0.25. However, in these experiments the size
of di was varied with sizes of 100, 500, 1,000, 1,500, and 2,000. A similar set of any-pass, majority-vote,
and all-pass experiments were performed for both the unimodal and multimodal distributions.

Results and Discussion

The results of the experimental trials outlined above are illustrated in Figures 5 and 6 for the unimodal
and multi-modal distributions, respectively. The charts reflect the 4x5x3 experimental design: the number
of folds (n) is shown along the x-axis of each individual chart; the p-value threshold is represented by
differently colored lines; and the three aggregation methods are represented by the three columns. The
eight D map to the eight rows (four in each figure). The y-axis in all charts shows the number of the
10,000 trials that are flagged as having significant correlation in the aggregate measure.
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Figure 5. Results of significance tests on correlation for 10,000 trials of subsets of 1,000 (x, y) data points
sampled from datasets of 5000 (x, y) data points from unimodal normal distributions with differing correlations
(0.61, 0.25, 0.1 and 0). The number of trials with p-values below different threshold values (0.04, 0.03, 0.02,
0.01, and 0.005) for inline replication using different numbers of folds (1, 3, 5, and 7) are shown for three
different aggregation methods (any pass, majority vote, and all pass).

The charts in Figure 5 show the results for the unimodal experiments. As might be expected, when
the correlation was high (r = 0.61), all trials are shown to pass the significance threshold regardless of
aggregation method or number of folds. This demonstrates that high correlation is successfully found
with zero false negatives. When the level of correlation in the dataset is moderate (r = 0.25), the number
of trials passing the significance threshold for a given aggregation methods decreases as the number of
folds (n) increases. This demonstrates that the n parameter serves as a control over the sensitivity of the
system to flag results as significant.

There is a similar reduction as n increases for correlations of 0.1 and 0 for all conditions except under
the the “any pass” aggregation method. This result may seem counter intuitive at first. However, in this
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Figure 6. Results of significance tests on correlation for 10,000 trials of subsets of 1,000 (x, y) data points
sampled from datasets of 5000 (x, y) data points from multimodal normal distributions with differing
correlations (0.61, 0.25, 0.1 and 0). The number of trials with p-values below different threshold values (0.04,
0.03, 0.02, 0.01, and 0.005) for inline replication using different numbers of folds (1, 3, 5, and 7) are shown for
three different aggregation methods (any pass, majority vote, and all pass).

case, the only correlation present in a given trial is the result of random noise since the dataset from which
the sample is drawn has zero correlation by design. Increasing the number of folds results in an increase
in the number of statistical tests. This in turn allows for a higher chance of noise producing a result that
appears significant. Because the “any pass” aggregation method marks any result as significant as long
as at least one fold was marked as significant, an increase in n results in an increase in false positives.
This result is critical. Using an aggregation method such as “any pass” essentially eliminates the benefits
of IR because it enables any single fold result to determine the aggregate measure result. This means that
results need not replicate across folds, increasing the chance for false positive results.
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As expected, trials that used the stricter “majority vote” and “all pass” aggregation methods had
fewer samples exceed the significance threshold when compared to “any pass.” As the correlation level
decreased, the “all pass” aggregation method returned the fewest significant results. This reflects the
stricter replication requirements for that approach. This trend is evident across all permutations of the
experiment, suggesting that IR behaves predictably, providing system designers with multiple controls
(the number of folds n, and the aggregation method) over the tradeoff between false positives and false
negatives.

We note that the results of these experiments confirm that the “any pass” aggregation method should
not be used for IR as it results in an increase of false positives. The results are reported to contrast with
the other aggregation options tested in the experiments (“all pass” and “majority vote”), and to highlight
that some aggregation functions are counter-productive.

Comparing the data from the unimodal experiments to the multi-modal results in Figure 6, the results
are nearly identical. All of the observations noted above with respect to the unimodal results also apply
in the multi-modal case. This suggests that one of the primary design goals for IR has been met: that IR
is robust to the underlying data distribution, without any assumption of normality.

The results of the second set of experiments, which focused on the impact of sample size on IR
behavior, are shown in Figure 7. As expected, larger sample sizes produced more reliable detection
of the correlations at all correlation levels. Using a stricter p-value thresholds (e.g., p < 0.01), or a
stricter aggregation functions (e.g., “all pass”) resulted in fewer trials producing significant results. This
result confirms that IR behaves as desired, exhibiting the same response to increases in samples size as
traditional statistical tests.

Overall, the experimental results present a clear and familiar picture of the tradeoffs that exist in the
parameterization of IR (e.g., the number of folds (n), and the choice of aggregation functions) when it
comes to limiting the number of false positives vs. false negatives. Higher n and stricter aggregation
methods result in a higher threshold for reporting meaningful results. This tradeoff suggests that there
is no “always optimal” set of parameters for IR. However, the results suggest that using n = 5 seems
to provide some balance between the two extremes, while “majority vote” aggregation seems to offer
a similar compromise. In particular, this combination exhibited desired behavior in both low and high
correlation experiments as illustrated in Figure 6.

Use Cases
The IR approach is compatible with a broad range of visual metaphors and interaction models, from basic
charts to more sophisticated exploratory visual analysis systems. To demonstrate this flexibility and to
explore the impact of adopting an IR pipeline, we developed two prototype IR systems: (a) a reference
prototype to study IR in isolation, and (b) a sophisticated visual analysis system to examine IR in the
context of a more complex analysis environment.

Reference Prototype
We developed a reference IR implementation as part of a simplified visual analysis prototype with the
goal of exploring the IR parameter space in isolation, without concern for the more complex interactions
that are part of a real-world application such as the one described in Section “DecisionFlow2.” The
prototype supports two basic visualization metaphors: (a) bar charts and (b) scatter plots with linear
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Figure 7. Results of significance tests on correlation for 10,000 trials of subsets of data points sampled from
unimodal and multi-modal distributions with correlation of r = 0.25. The number of trials with p-value
thresholds (0.04, 0.03, 0.02, 0.01, and 0.05) for inline replication using a constant number of folds (n = 5) is
shown for different sample sizes of di (100, 500, 1,000, 1,500, and 2,000).

regression lines. The prototype was tested using a dataset of electronic medical data containing over
40,000 intensive care unit (ICU) stays.43

The prototype interface, shown in Figure 8, contains three panels. In the center is the visualization
canvas itself. The left panel enables users to issue queries and control key parameters of the IR process.
Options include the number of folds (n) for the partition function, the use of sampling with replacement,
support for random or ordered incremental sampling, and controls to unfold the merged statistics and
show individual folds within the visualizations. The right panel shows detailed descriptive statistics for
both the individual folds (sji ) and the aggregation (si).

Figure 9 shows a series of bar charts rendered using the IR prototype to visualize the gender distribution
across three subpopulations from the ICU database. This example is directly analogous to the roulette
wheel bar chart example introduced in Section “Visualization as a Predictive Model,” as both summarize
the distribution of a binary variable in a given population.

The top row of charts in Figure 9 shows the aggregate gender distribution for each of the three
populations. The charts show a relatively similar distribution across all three populations, with a moderate
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Figure 8. The IR-based prototype shown here was developed to test the proposed pipeline and to explore the
parameter space with two baseline visualization types: bar charts and linear regression lines. The left panel
shows the query and IR controls, the middle panel shows the visualization space, and the right panel shows
detailed descriptive statistics computed for both the aggregate representation and the individual folds.
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Figure 9. Six charts produced by the IR prototype system. The top three charts (a-c) show the gender
distribution for three different sets of ICU patients. The relatively similar bar charts suggest that the underlying
populations are comparable. However, when the same populations are visualized with 5 folds (d-f), a different
story appears. The charts now clearly demonstrate that we know less about the population visualized in the
left column than we do about the population on the right. In this case, the difference is due largely to the size of
the respective populations.

increase in female representation moving from panel (a) to (b) to (c). The bar chart shows the gender
breakdown in each population quite clearly. However, there is no indication of the distribution’s stability
across different groups of patients. Consumers of the visualization are left to assume that the bar charts
provide an accurate depiction.

Panels (d-f) in Figure 9 show the exact same populations as panels (a-c), respectively. However, these
views incorporate measures computed for multiple folds (n = 5) using IR. These unfolded views provide
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Figure 10. Weight versus height distribution for patients admitted to a neonatal intensive care unit. Simulating
the results from a progressive visualization system, this figure shows both the raw data and best fit regression
line (shown in blue) for (a) 500 patients, (b) 1,000 patients, and (c) 2,500 patients. In all three cases, the IR
pipeline has computed a regression across five folds, shown in red. The decreasing spread across the red
regression lines conveys the expected—but often overlooked—change in variation between folds as the
sample size increases. The gray band across all three charts has been added to this figure to emphasize
these differences and reflects the variation across folds in (c) at the maximum observed weight.

a more accurate picture regarding the repeatability of the gender distributions. In particular, we see
from Figure 9(d) that the population visualized in the left column of the figure is not very predictable.
Meanwhile, far less variation across folds is visible in Figure 9(f). In this case, the major difference
is the size of the respective populations, which are 100, 1,000, and 10,000 for panels (d), (e), and (f),
respectively. The expected variance within each group is a critical factor for interpretation, but is invisible
in the original bar charts and easily overlooked even by expert users.38 The IR approach makes this
information more visible without requiring assumptions about the underlying distributions.

Figure 10, meanwhile, shows three screenshots of the IR prototype displaying data from the ICU
dataset using scatter plots with linear regression lines. In this case, the examples show data for populations
of neonates, with weight mapped to x position and height mapped to y position. A linear regression model
was calculated in all three cases using the IR pipeline with n = 5. The five regression lines, one for each
fold, are visible (“unfolded”) in the visualizations as red lines. In addition, an aggregate best-fit linear
model is shown in blue.

These screenshots show how IR helps convey uncertainty during progressive analysis, using the
incremental sampling feature of the prototype to vary the number of samples while keeping all IR
parameters constant. In Figure 10(a), only 500 patients are included in the scatter plot. As captured
by the varying slopes between the five red lines, there is relatively large disagreement across folds in the
linear models they produce. This uncertainty would be invisible in a similar plot rendered without the
folds.

As expected, the spread between the individual fold regression lines decreases as more patients are
retrieved by the incremental query feature. For example, Figure 10(b) shows the same visualization with
the same n = 5 folds. However, this version includes data for 1,000 patients. The larger sample size
results in increased stability across the folds. Part (c) of the same figure shows the same visualization
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(b)(a)

Figure 11. The DecisionFlow2 visual analytics system is shown here displaying medical event data using the
Inline Replication (IR) process outlined in this paper. The data in this example have been analyzed using five
folds, without replacement. The inset subfigures show (a) an initial visualization of the aggregation function’s
results for a particular medical event, and (b) a more detailed “unfolded” representation showing the variation in
positive and negative support as observed across the five folds produced by the partition function. Figures 12
and 13 show how differences in the unfolded representation can help inform users during an analysis.

with 2,500 patients. We see little improvement in agreement across folds compared to 1,000 patients,
suggesting that the rate of further gains in agreement will slow down.

As previously stated, the improvement in agreement as sample size increases is expected. However,
as evidenced by the “recent history” charts at casino roulette tables and the other examples referenced
throughout this paper, visualizations are often assumed to be accurate, without taking into account issues
of sample size or variation. This use case shows that IR can effectively convey this variation in the data
without the need for careful modeling, and in a non-parametric way that avoids assumptions about the
underlying distributions.
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DecisionFlow2
To test IR within a more fully-featured exploratory visual analysis environment, we developed
DecisionFlow2, a new IR-based version of our existing visual analysis system for high-dimensional
temporal event sequence data.7 A screen capture of the DecisionFlow2 interface is shown in Figure 11.

Original DecisionFlow Design The original version of DecisionFlow made heavy use of p-values to
help users identify event types that had a statistically significant correlation to a user-specified outcome
measure. When visualizing medical data, for example, this approach enables users to find types of
medical events (such as specific diagnoses, medications, and procedures) that—when appearing in a
particular pattern in a patient’s history—are associated with better or worse medical outcomes.

An interactive timeline at the top of the screen enables users to segment a cohort of event sequences
based on the presence of so-called “milestone” events. For a given subgroup, DecisionFlow visualizes
statistics for the potentially thousands of different event types that occur between milestones, with the
goal of helping users identify good candidates for new milestones. DecisionFlow conveys the event type
statistics via an interactive bubble chart similar to the one seen in Figure 11.

In the bubble chart, each event type is represented by a circle whose x-axis position is determined by its
positive support (the fraction of “good outcome” event sequences that contain the event type). Similarly,
each circle’s y-axis position is determined by its negative support (the fraction of “bad outcome”
sequences with the event type). Circle size and color encode correlation and odds ratio, respectively.
Importantly, circles representing event types whose presence correlates significantly (p < 0.05) with
outcome are drawn with a distinct border to make it easier for users to visually distinguish between
expected variation and potentially meaningful associations.

Design Adaptation for IR In the IR-based DecisionFlow2 system developed for this paper, a similar
bubble chart design is used to visualize the event type statistics. However, rather than showing data for
measures computed for the overall population mi, the circles encode aggregate measures computed by
IR. For example, Figure 11 shows the system with a bubble chart focused on a subset of data containing
45,278 individual events with 1,148 distinct event types. The support values (used to position the circles)
and other measures were all computed across 5 folds.

The aggregate view (without showing the unfolded data) in Figure 11(a) looks essentially identical to
the original DecisionFlow design. This is as intended, with the goal of making IR compatible with typical
visualization designs. However, while the visual encoding is similar, the number of statistically significant
correlations scores is reduced. In particular, a number of event types that were labeled as statistically
significant in the original design were no longer found to be significant once majority-voting across the
five folds was used to determine which event types were significant. This makes the visualization system
more selective in rejecting the null hypothesis. The result is a reduction in the likelihood of Type 1
errors, which are a common problem in high-dimensional exploratory analysis. More detailed results and
discussion are provided in Section “Results and Analysis.”

Another important part of the IR-based DecisionFlow2 is the ability to unfold the aggregate statistics
for each event type. Users can unfold an event type by hovering the mouse pointer over the corresponding
circle. For example, after hovering the mouse pointer for a few seconds over the circle shown in
Figure 11(a), the unfolded representation shown in Figure 11(b) is added to the visualization.

As this example shows, the DecisionFlow2 displays the unfolded data as a convex region drawn
around the original circle and outlined with a dashed border. This region corresponds to the convex
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(a) (b)

Figure 12. In general, (a) smaller differences between folds are seen when sample sizes are larger, while (b)
higher levels of variation are seen for smaller sample sizes.

hull determined by the (x, y) locations for each of the n folds that contribute to the aggregate measures
that determine the position of the original circle. In other words, the size and position of the unfolded
region represent the variation across folds in both the positive and negative support measures. Smaller
unfolded regions indicate that the values have little variation across folds. Larger unfolded regions, such
as the one shown in Figure 11(b), suggest a high degree of variation between folds and therefore lower
confidence in the repeatability of the aggregate measure.

The typical behavior observed when utilizing the IR-based implementation of DecisionFlow2 is shown
in Figure 12. Part (a) of the figure shows an event type from a very large subset of data that shows
very limited variation across folds. This is represented by the very small unfolded region located near
the center of the red circle just above the mouse pointer. Part (b) of the figure, meanwhile, shows an
event type with much higher variation (the dashed unfolded region surrounding the mouse pointer). This
figure, visualizing data from a smaller sample size, demonstrates what one might expect: findings based
on smaller sample sizes tend to have more variability and therefore should typically be given less weight
in a decision making process.

However, this very critical difference is not observable via the original bubble chart. The size of the data
corresponding to each bubble is made available elsewhere in the user interface for users who consciously
seek it out, but the implications of the differences in data size are left to the user’s imagination. It is only
through the unfolding process that the visualization itself conveys the difference in confidence that users
should place in one view versus the other.

Moreover, it is critical to note that the size of the dataset is not the sole determinant of repeatability for
a given measure across folds. Major differences in measure values can be seen even for similarly sized
datasets. For example, Figure 13 shows three different event types from the exact same subset of event
sequences. While the number of event sequences was the same for each type, the association between
ACE Inhibitors (center panel) and the user-defined outcome (eventual diagnosis with heart failure) was
far more consistent across folds.

Results and Analysis The IR-based DecisionFlow2 prototype provides visual feedback regarding the
variation in positive and negative support. As previously described, the system also uses IR to assess the
statistical significance of each event type’s correlation with patient outcome. For a given event type,
correlation coefficients and p-values are computed for each fold, then aggregated via majority-vote.
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(a) (b) (c)

Figure 13. Even with the same sample size, different measures can have different levels of repeatability
across folds. In this example, both (a) and (c) show relatively high levels of variability, while the small unfolded
region in (b) suggests that the relationship between outcome and ACE Inhibitors was fairly consistent across
all five folds. All three views were calculated using identical sample sizes.

Event types with more than n/2 folds showing statistically significant correlation are displayed in the
visualization with a distinct visual encoding.

To better understand the impact of IR and the choice of n on the visualized results, we conducted
a quantitative experiment in which we compared performance for a sample user interaction sequence
under various conditions. More specifically, we experimented repeatedly by performing the exact same
exploratory analysis steps using DecisionFlow2, using the exact same input data, varying only the number
of folds. The experiment was conducted at three partition settings: n = {1, 3, 5}.

In all three cases, the input dataset consisted of event data from the medical records of 2,899 patients
containing 1,074,435 individual medical events. These timestamped events contained 3,631 distinct
medical event types: specific diagnoses, lab tests, or medication orders that were present in the patients’
records. Of the 3,631 distinct event types, 381 were deemed prevalent enough by the DecisionFlow2
system to be the target of correlation analysis within the metric function. The same threshold was used
across all three partition settings, enabling us to compare analysis results across the exact same control
conditions.

The results of our analysis are shown in Table 2. With n = 1, the DecisionFlow2 system flagged
statistically significant results in the same way as in the original paper.7 Using a threshold of p < 0.05,
144 statistically significant event types were detected. When n was increased to three, the numbers were
reduced dramatically. Only 50 of the original 144 statistically significant event types remained after
applying a majority-vote aggregation algorithm. Of those 50, only 43 were significant across all three
folds. For n = 5, the number of significant event types was even smaller. The stricter requirements for
replication resulted in just 24 event types being flagged as significant given a majority-vote aggregation
algorithm, and just 15 event types were significant across all 5 folds.

As expected—and as intended—the number of statistically significant findings is reduced as n grows
from one to five. There are two primary reasons for this reduction. First, because each condition is applied
to the same set of event sequences for the same patients, the partition size is smaller as n increases. The
smaller number of patients reduces the statistical power for each partition. The expected impact of this
is higher p-values and fewer statistically significant findings. With the ever-growing size of datasets in
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Table 2. A comparison of statistically significant findings in three different IR configurations with
DecisionFlow2 applied to the same data. The number of event types flagged as significantly associated with
outcome was largest for n = 1. This setting corresponds to a traditional visualization approach with no
partitioning. Larger n values dramatically reduced the number of significant findings.

Number of Folds n = 1 n = 3 n = 5

Unanimously Significant 144 43 15
Majority Significant 144 50 24
At Least One Significant 144 56 29

Total Number of Measurements Made 381
Total Number of Event Types 3,631

many applications, however, the impact on statistical power due to partitioning should be minimal in
many use cases. At the same time, the majority vote aggregation function requires that a significant
level be repeatedly observed across multiple partitions (2 for n = 3, or 3 for n = 5). This reduces the
likelihood of random variation being misinterpreted.

While statistical significance based on p-value thresholds has known limitations to medical research
and beyond,44 it is a widely used metric in exploratory visualization because it enables a rough filtering of
data to manage visual complexity and the user’s analytic attention. Follow-up analysis of any discovered
insights is required. For this reason, reducing Type 1 errors becomes critical for modern visual analysis
applications where vast numbers of data points can be tested and prioritized for user analysis. As the
results presented here show, IR applies a higher bar for statistical significance, which has the potential to
limit unsupported conclusions from the data in cases where users make quick predictive assessments
directly from a visualization. It can also save significant effort in cases where follow-up analysis is
performed by reducing the number of falsely generated hypotheses.

Discussion of Limitations
The IR approach is designed to embed the process of replication directly within the visualization pipeline,
providing a non-parametric approach to calculating and visualizing the repeatability of derived measures.
As the examples in Section “Use Cases” demonstrate, the approach can be effective when applied to a
variety of different measures and visual metaphors. However, there are limitations to IR that must be
acknowledged.

First, the proposed approach does nothing to combat selection bias or other problems in the creation of
the original dataset. Any systemic sampling biases in the original data will be present across all folds
created by the partitioning algorithm. Therefore, even measures that generalize well across multiple
partitions are not necessarily generalizable to entirely new datasets.

Second, the IR approach is not truly predictive in nature. While information about the ability of
various measures to replicate across multiple folds can be useful in vetting potential conclusions, findings
uncovered via IR should be considered hypotheses that require testing using more rigorous methods when
important decisions are to be made.

In particular, hypothesis testing often requires the collection and analysis of new data to fully
understand the conditions under which a given insight holds true. Our method does not replace this
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step. Instead, IR helps reduce the number of Type 1 errors, which can lower the number of conclusions
that need testing. However, IR does not eliminate the necessity of a post-hypothesis validation process.

Conclusion
Traditional data visualizations show retrospective views of existing datasets with little to no focus on
prediction or generalizability. However, users often base decisions about future events on the findings
made using these visualizations. In this way, visualization can be considered to be a visual predictive
model that is subject to the same problems of overfitting as traditional modeling methods. As a result,
visualization users can often make invalid inferences based on unreliable visual evidence.

This paper described an approach to visual model validation called Inline Replication (IR). Similar
to cross-validation and bootstrap resampling techniques, IR provides a nonparametric and broadly
applicable approach to visual model assessment and repeatability. The IR pipeline was defined, including
three key functions: the partition function, the metric function, and the aggregation function. In addition,
methods for visual display and interaction were discussed. The article reported results from empirical
experiments that capture how IR performs under different conditions, providing insights into how the
choice of IR parameters impacts performance. Finally, two uses cases were described, including a new
IR-based implementation of a previously-published exploratory visual analytics system. The use cases
demonstrated the successful compatibility of IR with a variety of visual metaphors and derived measures.

While the results presented in this paper are promising, they represent only one step in a growing
effort to bring high repeatability and predictive power to visualization-based analysis systems. There are
many areas for future work including: improved techniques for detecting and conveying issues related to
missing data, techniques for addressing and visually warning users regarding selection bias, and improved
methods for conveying the degree of compatibility between a given statistical model’s assumptions and
the actual underlying data.
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