Behavior-Driven Visualization Recommendation

David Gotz
IBM T.J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10578 USA
dgotz@us.ibm.com

ABSTRACT

We present a novel approach to visualization recommenda-
tion that monitors user behavior for implicit signals of user
intent to provide more effective recommendation. This is in
contrast to previous approaches which are either insensitive
to user intent or require explicit, user specified task informa-
tion. Our approach, called Behavior-Driven Visualization
Recommendation (BDVR), consists of two distinct phases:
(1) pattern detection, and (2) visualization recommendation.
In the first phase, user behavior is analyzed dynamically
to find semantically meaningful interaction patterns using
a library of pattern definitions developed through observa-
tions of real-world visual analytic activity. In the second
phase, our BDVR algorithm uses the detected patterns to in-
fer a user’s intended visual task. It then automatically sug-
gests alternative visualizations that support the inferred vi-
sual task more directly than the user’s current visualization.
We present the details of BDVR and describe its implemen-
tation within our lab’s prototype visual analysis system. We
also present study results that demonstrate that our approach
shortens task completion time and reduces error rates when
compared to behavior-agnostic recommendation.

Author Keywords
Intelligent visualization, Information visualization, User be-
havior modeling, Visualization recommendation

ACM Classification Keywords
Algorithms, Human Factors

INTRODUCTION

Visualization has long been used to harness the power of hu-
man perception to uncover insights from large collections of
data. However, it is impossible to create a “one-size-fits-all”
technique for visualizing data because every task and data
set has its own unique properties. As a result, the informa-
tion visualization community has developed a wide range of
novel visual metaphors designed to address the needs of a
broad spectrum of different types of data and visual tasks
(e.g., correlation, comparison, etc.).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1UI'09, February 8-11, 2009, Sanibel Island, Florida, USA.

Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

315

Zhen Wen
IBM T.J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10578 USA
zhenwen @us.ibm.com

Loggad in as ZHEN WEN (Sign out)
SUMMARIZE OLIST

Dashboard | Explore | Trails | Datasets | Help |
Compare

using Line
Graph

Fan lens

Parallel
Coordinates

Q oy [raped L e

Bar chart

Inspect || ()’ Inspect || G Inspect [22~ 4 o

Figure 1. Behavior-driven visualization recommendation has been in-
tegrated into our lab’s visualization system. Users can (a) issue queries
and (b) interact with visualizations to analyze data. When a new rec-
ommendation is provided due to a user’s behavior, he/she is notified via
(c) a magic wand icon in the history panel and (d) a flashing segment
on the recommendation sidebar. Users can accept the recommendation
with a single click, or ignore it to continue uninterrupted.

Given the variety of options, how and when to use a par-
ticular visual metaphor requires a significant level of visual
literacy. Unfortunately, average business users don’t typi-
cally posses these skills. While domain experts within their
own area, they usually have little or no training in visual-
ization. Companies must therefore hire professional ana-
lysts (with visualization and analysis skills, but little do-
main knowledge) to generate reports that are in turn used
by business-line employees to make decisions. This dramat-
ically increases the cost of visualization-based solutions and
places them beyond the reach of the legions of business users
who might otherwise benefit from their capabilities.

Recognizing the challenge of supporting average users, sev-
eral visualization systems have integrated intelligent algo-
rithms to automatically compose or recommend effective vis-
ualizations given a user’s task context. Existing systems can
be generally classified into one of three categories. Task-
based systems (e.g., [3]) use formal visual task descriptions
as input to construct appropriate visual presentations. In
contrast, data property-based systems (e.g., [14, 19]) focus
on the data set being visualized and use features of the data
itself as input to the visualization recommendation or com-
position algorithm. Finally, hybrid systems (e.g., [1, 24]) use
a combination of both data properties and explicit represen-
tations of user intent to determine a proper visualization.

While existing approaches have helped reduce the skill bar-
rier, visualization systems remain difficult to use. This is

especially true for exploratory visual analysis tasks where
users must interactively navigate through data to perform
complex and data-driven analyses. In these cases, it is dif-
ficult for a user to explicitly describe his/her intent because
it depends on what he/she finds during her task. Moreover,
the user’s intent can evolve as he/she examines the data and
performs follow-up investigations. These factors make task-
based or hybrid systems that require explicit task descrip-
tions less appropriate. As a result, data property-based ap-
proaches are often used even though they don’t incorporate
any information about the user’s visual task.

To overcome this limitation, systems often allow users to
manually change visualization metaphors in the middle of a
task. However, studies have shown that as a task evolves,
users tend to remain with their current visualization as it be-
comes less useful despite the availability of better alterna-
tives [12, 18]. This “sticky” behavior, which we call visual
inertia, results in users working harder than needed because
they are using the wrong visual tool for their task.

We hypothesize that behavior-driven visualization recom-
mendation (BDVR)—an approach that actively monitors a
user’s normal analytic behavior to dynamically infer his/her
ongoing visual task requirements to drive recommendations—
can provide more accurate and task-relevant visualization
recommendations when compared to previous approaches.
Moreover, BDVR can provide dynamic recommendations as
user intent evolves to help overcome the problems associated
with visual inertia.

For example, a person comparing the price of hotels using a
map-based visualization like Google Maps would need to it-
eratively open the callout for each hotel to view the required
pricing information. This visual comparison requires signif-
icant user interaction. The user’s iterative inspection of the
callouts is just one instance of an important and common
feature of visual analytic behavior, which we call patterns.
Our observations of analytic activity have shown that users
who remain with a sub-optimal visualization due to visual
inertia often invent ad hoc patterns to accomplish their task
[9]. Each pattern (e.g., the iterative inspection of the map’s
callouts) has a corresponding user intent (e.g., to compare
hotel prices). BDVR would detect this behavior pattern and
suggest an alternative presentation (e.g., a sorted bar chart)
that could answer the user’s question at a single glance.

In this paper, we describe a novel behavior-driven approach
to visualization recommendation that automatically detects,
interprets, and reacts to a user’s natural behavior patterns. In
contrast to previous work, we forgo explicit task descriptions
and instead use implicit task information obtained by moni-
toring users’ normal behavior. To the best of our knowledge,
this is the first work on visualization recommendation that
uses dynamically detected behavior features as implicit sig-
nals of users’ task requirements. Specifically, our work on
BDVR offers the following contributions:

e A set of common visual analytic patterns. We define
four common pattern types that we observed across a wide

316

range of users and tasks. We describe both the behavior
that marks each pattern as well as the implied intent.

A two-stage algorithm for behavior-driven visualiza-
tion recommendation. We present a novel BDVR algo-
rithm with two distinct phases. First, it monitors user in-
teractions throughout the user’s task and uses a rule-based
approach to to detect semantically meaningful interaction
patterns. Second, the detected patterns are used as input to
our recommendation algorithm which infers user intent in
terms of common visual tasks (e.g., comparison) and sug-
gests visualizations that better support the user’s needs.

o An evaluation of BDVR’s effectiveness. We include re-
sults and analysis from a 20-person study of BDVR as
applied within HARVEST, our lab’s prototype visualiza-
tion application [7]. The findings show that BDVR im-
proves task completion time and reduces task error rate
when compared to behavior-agnostic recommendation.

RELATED WORK

Our work on behavior-driven visualization recommendation
is related to several different areas of research including stud-
ies of visual analytic behavior, prior work in behavior-driven
interfaces, and previous approaches to intelligent visualiza-
tion.

Visual Analytic Behavior

Various studies have been conducted to better understand
user behavior during sensemaking tasks in general [20] and
during visual analysis in particular. Several of those that fo-
cus on visualization [9, 12, 18] have observed significant
levels of visual inertia in which users of a particular visu-
alization are reluctant to change to alternative views.

For example, Kobsa [12] noted that, rather than switching
views, users spent significant time attempting to use a visu-
alization provided by default even when it was a poor match
for their tasks. As captured in the performance model pro-
posed by Plumlee and Ware [18], the additional interaction
steps steps taken by these users can have a strong negative
impact on their performance. Our work on BDVR, which
is designed to reduce the negative impact of a user’s visual
inertia, is directly motivated by these studies.

In other work, several researchers have developed tools for
modeling and capturing a visualization user’s behavior. Such
systems have been used for a wide variety of applications,
including to enable re-use of complex analysis processes [2,
11], to support the re-visitation of previously viewed visu-
alization states [4, 7, 13, 22], and to help ensure a compre-
hensive analysis for long-term tasks [17]. Our work simi-
larly captures a model of the user’s visual analytic behav-
ior. However, in contrast to previous work, our algorithm
actively analyzes the captured model to gather implicit input
for dynamic visualization recommendation.

Behavior-Driven Interfaces

While behavior-driven techniques have not been previously
applied to visualization recommendation, they have been ex-
plored in other domain areas. For example, TaskTracer [5]

captures low level interaction events (e.g., focus events, text
selection, etc.) and allows users to tag them as part of a
specific task. This builds a task profile that can be used to
assist in interruption recovery. More recently, TaskTracer
has been extended to eliminate the manual tagging process
to allow fully automated creation of task profiles [21]. In
similar work, the SWISH system [16] monitors user desk-
top activity as a stream of windows events. Using a metric
for relatedness,” SWISH can determine groups of windows
that related to a single task.

Plan-based interfaces and implicit recommender systems are
also related. Similar to BDVR, plan-based techniques (e.g.,
[6]) monitor semantic activity events to determine when a
system should adapt to meet a user’s changing needs. How-
ever, their plans consist of pre-defined finite automata that
represent tasks (e.g., a classroom lecture). In contrast, we
do not require any explicit task model. Recommender sys-
tems based on implicit feedback are also related. However,
such systems often model aggregate populations (e.g., [15])
and/or employ user models based on information content
rather than user interaction behavior (e.g., [10]). In contrast,
we offer personalized behavior-based recommendation.

Intelligent Visualization

A large number of intelligent algorithms have been designed
to automatically compose or recommend effective visualiza-
tions given a user’s task context. Existing systems can be
generally classified into three categories: (1) task-based, (2)
data property-based, and (3) hybrid systems.

Task-based systems (e.g., [3]) use formal visual task descrip-
tions as input to construct appropriate visual presentations.
These tools typically rely on a priori knowledge of the user’s
visual task which must be explicitly defined. In contrast,
data property-based systems (e.g., [14, 19]) focus on the set
of data being visualized and use features of the data set as
input to the visualization recommendation algorithm. These
tools have no task model, and are therefore limited in their
ability to customize intent-appropriate visualizations.

Combining these approaches are hybrid systems (e.g., [1,
24]). They use both data properties and explicit represen-
tations of user intent to determine a proper visualization.
Our work on BDVR is most closely related to this cate-
gory. However, it is impractical to require that users ex-
plicitly specify or pre-define models that can describe their
evolving intent during dynamic visual analytic tasks. Our
approach therefore actively monitors a user’s behavior to au-
tomatically infer user visual task requirements at runtime.

PATTERNS DURING VISUAL ANALYSIS

To support our approach to behavior-driven visualization rec-
ommendation, we must be able to infer a user’s analytic
goals based on his/her behavior over the course of a task.
Only then can we recommend task-appropriate visualiza-
tions. In this section, we discuss user action patterns, a key
structural aspect of visual analytic behavior that maps di-
rectly to end-user analytic goals. Patterns are the key enabler
for our behavior-driven recommendation algorithm. We first

317

review the definition of patterns and discuss why they occur.
We then illustrate a number of commonly observed patterns
through real-world examples.

Patterns of Behavior

To better understand how users perform visual analysis tasks,
we conducted a study in which users were asked to work on
realistic analysis tasks using one of two commercial-grade
visualization tools. We recorded video of each user’s task
and manually captured logs of their analytic activity. While
many of the study results are beyond the scope of this paper
[9], we focus on is one finding that motivates much of our
work on BDVR: action patterns.

In our analysis of both the recorded video and activity logs,
we modeled user behavior in terms of a user’s analytic ac-
tions [8]. Actions provide a vocabulary (e.g., Inspect, Filter,
and Bookmark) for modeling a user’s visual analytic steps
at a semantic level that is domain independent (e.g., inde-
pendent of the tool-specific sequence of clicks, drags, and
key-press events required to perform a specific action).

In our analysis, we found that nearly every user performed
short, iterative sequences of analytic steps in order to accom-
plish a specific low-level analytic goal, such as visual com-
parison. For example, one user conducting a travel-related
task performed an iterative sequence to compare hotel room
rates for a set of hotels displayed on a map. The user clicked
on each hotel’s icon to open a call-out with the correspond-
ing hotel rate and other details. We call this behavior an
Inspect action. To find the cheapest rate, the user Inspected
each hotel one after the other. The same action sequence
was performed multiple times throughout the user’s analy-
sis, though often with different parameters (e.g., hotels in a
different city, or restaurants instead of hotels).

We refer to these iterative behaviors as patterns. Each pat-
tern consists of a repetitive sequence of actions performed
by a user to accomplish a corresponding analytic goal. Us-
ing the example above, the user’s pattern of iterative Inspect
actions over a set of similar objects (e.g., hotels) reflects the
user’s intent to visually compare a specific object property
(e.g., hotel rates). We found from our logs of user behavior
that over 96% of users performed at least one type of pat-
tern three or more times during a 30 minute task. To put this
number in perspective, a randomly sequenced list of actions
with length similar to those of the logs in our study would
have similar structures only 9.6% of the time. This provides
strong evidence (p < 0.01 for one-tailed Binomial test) that
patterns are a structure of visual analytic behavior and do not
occur by chance [9].

Not only are patterns widespread, but they occur at various
scales. Most basic are simple patterns which occur when
users perform a single type of analytic action repeatedly (e.g.,
the example describe above: Inspect(hotel,),
Inspect(hotely), Inspect(hotel.)). More complex com-
pound patterns occur as users repeat entire chains of actions
to accomplish an analytic goal rather than repeating just a
single type of action. For example, a user might perform

Figure 2. Examples of BDVR in HARVEST. After (al) an iterative Scan pattern of temporal data, the system recommends (a2) a time chart as a more
appropriate alternative given the current task context. Similarly, the system responds to (b1) a Flip pattern of various years of data by recommending
(b2) a set of time charts that directly facilitate the user’s intended comparison.

a complex pattern to compare hotels along multiple dimen-
sions (e.g., room rate, user ratings, and amenities) by us-
ing multiple types of actions to gather relevant data for each
hotel. We focus in this paper on simple patterns because
they are less ambiguous in terms of user intention, though
we consider compound patterns as important future work.

Based on the evidence gathered in our study, we believe that
patterns are executed primarily to compensate for real or per-
ceived limitations in the visual tool being used to perform a
task. Because users cannot obtain the desired analytic re-
sult directly, they invent iterative procedures to perform the
required task. These ad hoc procedures form patterns. For
instance, the user in the hotel rate example performed a pat-
tern to compare prices because the map-based visualization
did not facilitate such a comparison directly. In contrast, no
pattern was required to determine the geographical relation-
ships between hotels because this comparison was directly
supported by the map metaphor. Rather than switch to an
alternate view of the hotels that would allow a direct visual
comparison of the rates, the user’s visual inertia kept him
using the map despite its lack of functionality.

Common Patterns

The types of patterns performed by participants in our study
settings vary widely. This is especially true for compound
patterns which provide more room for variation. However, a
handful of simple patterns were commonly observed across
many users and tasks. In this section, we define the four
most widespread pattern types: Scan, Flip, Swap, and Drill-
Down.

Scan Pattern. A Scan pattern takes place when users itera-
tively perform Inspect actions over a series of visual objects
that represent similar data objects. A Scan pattern indicates
a user’s intent to visually compare attributes of the objects

318

being scanned. For example, consider the hierarchical Fan-
Lens visualization of bridge inspection data shown in Fig-
ure 2(al). A user that needs to determine which state has
the largest increase in structural bridge problems over any 5
year period would need to iteratively expand sections of the
visualization for each state (e.g., California, then Arkansas,
etc.) to expose the temporal data for comparison. This user
is performing a Scan pattern over States to compare bridge
failures over Time.

Flip Pattern. A Flip pattern occurs when users iteratively
change filter constraints along a particular dimension to al-
ter the set of data on display within a visualization. A Flip
pattern indicates a user’s intent to visually compare multiple
sets of data. For example, consider the parallel coordinates
visualization of stock data shown in Figure 2(bl). A user
intending to identify the best single year stock performance
by industry might iteratively change the year constraint of
his/her query (e.g., from 1995 to 1996 to 1997, back to 1995,
etc.) to explore the full space. This user is performing a Flip
pattern over Years to do the intended task for each industry.

Swap Pattern. A Swap pattern occurs when users repeat-
edly re-arrange the order in which dimensions of data are
presented within a visualization (e.g., swapping data dimen-
sions on axes within a scatter plot or re-ordering axes within
a parallel coordinates visualization). A Swap pattern cor-
responds to a user’s intent to compare correlations between
various dimensions of data. For example, consider a paral-
lel coordinate visualization of real estate data. A user that
needs to search for correlations between dimensions (e.g.,
house style vs. selling price, or school quality vs. taxes, etc.)
would iteratively re-order the axes in search of correlations
between neighboring dimensions. This user is performing a
Swap pattern over Real Estate Attributes to achieve the in-
tended correlation comparison.

__...__V 4_\
0

The Internet

/ \
I 1

| Action Tracker |

Action Response
f f

Rec.Vector _’;‘A

Contexte,

Visualization
Recommender

Query
Manager

Data«,
Contexte,

Figure 3. A simplified architectural view of our BDVR system.

Drill-Down Pattern. A Drill-Down pattern occurs when
users repeatedly filter down along orthogonal dimensions of
a data set. A Drill-Down pattern corresponds to a user’s in-
tent to narrow his/her analytic focus to a targeted subset of
a data collection based on facets of metadata. For example,
consider a user who wishes to examine only hotels with four-
star restaurants, ratings of 3 stars or higher, and with fitness
facilities. The user would iteratively filter the set of hotels
three times, once for each criterion, to restrict the displayed
options to only those which meet his/her requirements. This
user is performing a Drill-Down pattern over Hotels to iso-
late the targeted subset of lodging options.

BEHAVIOR-DRIVEN VISUALIZATION RECOMMENDATION
Our behavior-driven approach to visualization recommenda-
tion exploits the patterns of interaction behavior that occur
naturally during visual analysis to provide recommendations
that better match a user’s evolving analytic needs. In this
section, we first provide a brief overview of HARVEST, our
lab’s visual analytic system within which our recommenda-
tion algorithm has been developed. We then describe the
two main phases of our approach: (1) pattern detection, and
(2) visualization recommendation. Finally, we describe how
recommendations are conveyed to users and how the system
responds when users accept a suggested alternative.

The HARVEST Visual Analytics System

Our algorithm for BDVR is built into HARVEST, a visual an-
alytics system designed in our lab to help everyday users
derive insights from large amounts of data [7]. HARVEST
embraces intelligent user interface techniques to support a
general business user population that has no special training
in visualization or analysis. It contains a set of smart visual-
ization components, a visualization recommendation engine,
and an action tracking module that captures a semantics-
based record of a user’s analytic activity for reuse and insight
provenance. A screenshot of the HARVEST system is shown
in Figure 1, and the remainder of this subsection provides a
brief overview of the system architecture.

HARVEST is a thin-client web application that provides ac-
cess rich server-side functionality (see Figure 3). The

319

| Notation [Definition

a; The action performed in exchange .

a; The overall system response to action a;

C; The task context calculated by the ac-
tion tracker module.

d; Data returned based on the task contact
following action a;.

p; =< tp, G > | The pattern report created after record-
ing action a;, where t,, is the type of
pattern and G is the set of generalized
parameters.

75 The ranked list of visualization recom-
mendations in response to action a;.
Tactive The active trail sequence, representing
the chain of actions a; that makes up a
user’s current line of inquiry.

Table 1. Notation used in the definition of our behavior-driven visual-
ization recommendation algorithm.

HARVEST client can run in standard web browsers includ-
ing Firefox and Internet Explorer. Through a combination
of client technologies (HTML, Java, Javascript, and AJAX),
the user interface allows users to issue queries and directly
interact with visualizations to perform interactive tasks. For
example, users can interactively select individual wedges in
the chart shown in Figure 1 to filter down to a subset of data.
Alternatively, users could click on one of the visualization
choices shown in the sidebar to quickly change the display
to an alternative visual metaphor.

In response to a user’s interaction with the system, an Action
a; is reported by HARVEST’s smart visualization components
[7] and forwarded over the network to the server where it is
processed first by the Action Tracker module. Actions are
semantically meaningful units of users’ visual analytic ac-
tivity, such as Query, Filter, or Bookmark [8]. The Action
Tracker records each new action in two distinct data struc-
tures. First, it maintains a graph-based structure that rep-
resents the logical sequence of discreet analytic steps in a
user’s unfolding analysis, which we call a trail graph. Sec-
ond, the action tracker builds a summary of the user’s task
context ¢; which represents an aggregated view of the user’s
current line of inquiry (e.g., a set of data constraints and the
user-selected visual metaphor). The Action Tracker then an-
alyzes the trail graph in search of semantic behavior patterns.
If a pattern is found, a pattern report p; is generated and sent
forward through the HARVEST pipeline. The pattern detec-
tion process is described in detail later in this section and is
a key element of our behavior-driven approach to visualiza-
tion recommendation.

The task context ¢; built by the Action Tracker is forwarded
to the Query Manager which translates the data constraints
portion of ¢; to SQL and issues a query against an external
content store. It sends the retrieved data d; together with ¢;
to the next component in our pipeline.

The Visualization Recommending module receives the data
d; and task context c; each time an action flows through the

1
—

1

Figure 4. The Action Tracker maintains a graph-based data structure
representing the logical structure of the user’s activity. The user’s ac-
tive trail 74c¢;10 (highlighted nodes) represents a linear summary of
the user’s current line of inquiry.

server. In addition, whenever a behavior pattern is detected
by the action tracker, a report p; is passed as additional in-
put to the recommender. From these inputs, the visualiza-
tion recommendation algorithm generates a ranked vector
of data- and behavior-appropriate visualization recommen-
dations, 7;. Each recommendation specifies both (1) a vi-
sual metaphor and (2) a description or instantiating the vi-
sual metaphor (e.g., a data-mapping that connects the data
in d; to the visual slots exposed by the specified metaphor).
The recommendation vector is passed back through the ac-
tion tracker which records the system’s response a; before
sending it on to the client for rendering through the user in-
terface. We describe how recommendations are conveyed to
users in more detail later in this section.

As this flow demonstrates, both the Action Tracker and Vi-
sualization Recommender modules play a key role in our
approach to behavior-driven recommendation. We therefore
focus on these two components as we define the BDVR al-
gorithm.

Detecting Patterns

The Action Tracker module is responsible for monitoring
a user’s visual analytic activity and detecting semantically
meaningful patterns of behavior. As shown in Figure 3, user
behavior is reported in the form of semantic actions. In re-
sponse to each incoming action a;, the Action Tracker up-
dates its internal graph-based representation of the logical
flow of the user’s analysis activity. Most relevant to BDVR,
this representation includes a linear sequence of user actions
that we call the user’s active trail T,c50e, Which represents
the logical sequence of actions corresponding to the user’s
current line of inquiry. The pattern detection is applied to
the sequence of actions in the active trail.

For example, Figure 4 shows a high-level overview of the
graph-based action tracker representation of a user’s session
that contains 25 user actions. The actions are numbered
based on the temporal order in which they occurred, while
the five branches in the structure represent five logical lines
of inquiry explored by the user. Highlighted in the figure are
nine actions that make up the user’s active trail, T,¢¢ipe-

Tactive =< a1, 016, 417, 018, 419, G20, A23, G24, d25 > (1)

320

<pattern_definition type="flip">
<symbol_definition action="filter" symbol="F"/>
<symbol_definition action="query" symbol="Q"/>
<sequence regex="F{3}?" parameter_constraint="identical"/>
<sequence regex="Q{3}?" parameter_constraint="identical"/>
</pattern_definition>

Figure 5. Our rule-based pattern detection algorithm uses declarative
XML-based definitions (such as this one for the Flip pattern) to allow
the definition of new patterns without any code changes.

The algorithm for constructing the graph-based data struc-
ture is motivated by our action-based model of visual ana-
lytic activity [8] and is beyond the scope of this paper.

Pattern Definitions

After integrating a newly reported action a; into T,¢tive, the
action tracker initiates its search for semantically meaningful
action patterns. It employs a rule-based approach to pattern
detection based on a library of pattern definitions. The li-
brary contains one definition for each supported pattern type
(e.g., Scan or Flip). Each pattern definition includes two
parts: (1) one or more regular expressions that encode the
action sequences that form a particular pattern, and (2) a set
of pattern feature guidelines that specify requirements on the
parameters of each action in a matching sequence.

For example, the Scan pattern in Figure 2(al) occurred when
a user performed iterative Inspect actions that focus on sim-
ilar visual objects (e.g., structural bridge problems in Cali-
fornia, Arkansas, Alabama, etc.). Therefore, a Scan can be
defined by the regular expression “I{4}?” (which matches
sequences of four or more Inspects at the end of 7,4,¢) and
pattern feature guidelines that require each Inspect to refer-
ence the same type of data (e.g., structural bridge problems
in various states).

We create similar definitions for each pattern type. A pattern
definition can have more than one regular expression if mul-
tiple distinct action sequences can correspond to the same
user intention. For example, the Flip pattern (see Figure 5)
has two regular expressions and occurs via either a sequence
of queries (from our query tool), or a sequence of filters (per-
formed through direct interaction with a visualization tool).

Pattern feature guidelines are just as critical as regular ex-
pressions in defining patterns and can by themselves help
distinguish between different user intents. For example, the
Drill-Down pattern is defined using the exact same regular
expressions as Flip, but with different pattern feature guide-
lines. Drill-Down requires all filters to reference unique
data types (e.g., Filter[Status = StructuralProblem)],
Filter[Year = 2006], and Filter[State = Alabamal),
while Flip requires that all filters reference identical data
types (e.g., Filter[Year = 2006], Filter[Year = 2007],
and Filter[Year = 20086)).

Detection Algorithm
Pattern detection is performed via a three phase process.
In the first expression matching phase, T,ctive 18 compared

against the regular expressions associated with each defini-
tion in the pattern library. For example, if the final four ac-
tions in 7,450 Were all Inspect actions, it would match the
Scan definition. Definitions with at least one matching regu-
lar expression are forwarded to the next stage of the process.

The second phase is feature validation. For each defini-
tion forwarded from the first phase, the matching actions in
Tactive are vetted against the pattern feature guidelines to de-
termine if a valid pattern has been found. This is performed
by analyzing the parameters for all actions in the matching
sequence. For instance, consider the Inspects illustrated in
Figure 2(al). These actions all focus on the subset of data for
bridges of Status = StructuralProblem across various
State values. This constitutes a Scan because all steps ref-
erence the same dimensions (Status and State) as required
by the pattern definition. In contrast, if each Inspect focused
on different dimensions they would not constitute a Scan.

The final phase is generalization. When a pattern definition
has been satisfied, generalization is performed by examining
the shared parameters of the matching actions to determine
the scope of the pattern. At the end of this stage, a pattern
report p; =< t,, G > is forwarded to the visual recommen-
dation module. Here, t,, is the pattern type and G is the set of
generalized parameters. Continuing with the Scan example
from Figure 2(al), the generalization process would detect
that all actions reference Status = StructuralProblem
but vary along the State dimension (e.g., California, Arkansas,
Alabama). As aresult, the pattern report defined below would
be passed on to the recommendation module.

Status = StructuralProblem

pi =< Scan, State = x

@

Visualization Recommendation

Given a detected user behavior pattern, our visualization rec-
ommendation engine automatically recommends the top-N
suitable visualizations to the user. This engine extends our
previous effort in using example-based learning to automate
visualization generation [24] in two respects. First, the en-
gine infers a user’s intention from detected patterns to rec-
ommend alternative visual metaphors. Second, the engine
tailors the instantiation description of the visual metaphor to
the inferred visual task.

Recommendation Based on Detected Patterns

A user’s intention in visual tasks dictates the type of visu-
alization that is most appropriate to use. However, it is dif-
ficult for users to explicitly specify their intention, particu-
larly during complex analyses in which the user’s intention
dynamically evolves as new insights are discovered. There-
fore, our recommendation engine utilizes the pattern reports
produced by our pattern detection algorithm as implicit sig-
nals of users’ intended visual tasks.

The first stage of our visual recommendation algorithm is
to infer a user’s visual task from both the pattern report p;
and the context our engine maintains about the current visu-
alization (e.g., the data d; and visual metaphor presented to

321

the user at the time the pattern was performed). We repre-
sent a visual task as: VisualTask =< t,, D >. Here, t,
is the type of visual task. We map the implied intent of our
defined patterns to specific visual tasks such as visual com-
parison, one of the most common types of visual tasks [3].
D is the set of data dimensions associated with the visual
task. Each data dimension in D is represented as a 4-tuple:
Dimension =< ng,tq, Cq,rq >. Here, ng is the name of
the dimension, ¢4 is the data type of the dimension, Cy; is a
set of constraints on the dimension, and r4 describes the role
of the dimension in the intended visual task.

For each dimension in d;, our engine first determines its
role ry based on p;. 74 can be one of three values: con-
straint, differentiating, or characterizing. A constraint di-
mension is used to limit the scope of visual comparison (e.g.,
Status = StructuralProblem in Equation 2). A dif-
ferentiating dimension distinguishes the objects being com-
pared (e.g., the State dimension in Equation 2). Both of
these dimension types can be obtained from the G in a pat-
tern report. In contrast, a characterizing dimension is a char-
acteristic of the objects being compared and is determined by
the visualization context following a rule-based approach.
For example, in the Scan pattern that triggered the report in
Equation 2 there are two characterizing dimensions: Year
and Number. These correspond to the number of bridge
problems in a particular year, the attributes of the State
wedges being compared by the user in Figure 2(al). After
rq 1s determined for a dimension, its name ng and data type
tq can be obtained from the data description for d;. The set
of constraints C; is a union of the constraints in the user’s
task context ¢; and the G in a pattern report.

The inferred VisualTask is then used together with the
properties of data d; to retrieve a list of potentially useful
visual metaphors from a visualization example corpus [24].
In this corpus, the visual metaphors are annotated with the
visual tasks and data properties for which they are suitable.
For example, the line graph metaphor is annotated as suit-
able for comparing numerical values along time. During
the retrieval of visual metaphors, the annotations are used
to compare with the given VisualT ask.

Tailoring Visualization Instantiations

For each of the suitable visual metaphors ranked by the rec-
ommendation engine, we generate an instantiation descrip-
tion. The description includes information on: (1) appropri-
ate data transformations for d;; and (2) a data-mapping that
connects the transformed data to the visual slots exposed by
the metaphor.

The descriptions are tailored by our engine to satisfy the in-
ferred visual task using the list of characterizing data dimen-
sions in r4y. However, for a given VisualT ask, there may be
too many characterizing dimensions to be effectively visual-
ized by a single visualization. For example, in Figure 2(b2)
a line graph can be used to compare the Price dimension
along the Year dimension. However, the line graph cannot
effectively visualize the Sector and Industry data at the
same time as the other dimensions.

To handle this issue, our engine selects and groups character-
izing data dimensions so that the data can be visualized using
multiple instances of the visual metaphor (e.g., multiple line
graphs). For this purpose, we use a content selection algo-
rithm [23] to group data dimensions. Consider the example
in Figure 2(b1), where the Stock dimension (a stock’s name)
is highly related to the Price dimension because there is a
one-to-one mapping. In contrast, the Sector and Industry
dimensions have a one-to-many relationship with Stock and
are therefore less tightly related. As a result, our algorithm
places Stock data on individual line graphs. Of the remain-
ing dimensions, Sector has better grouping properties (i.e.,
a smaller number of groups) and is used to partition stocks
into multiple time charts. This is encoded in an instantia-
tion description along with the needed data transformations
to produce the set of line graphs in Figure 2(b2).

Conveying Recommendations to Users

A critical component of any recommendation algorithm is
conveying the appropriate alternatives to the user. HARVEST
uses a passive approach to notify users of new visualization
recommendations that occur as a result of behavior patterns.
First, the system displays a magic wand icon near the user’s
navigation history to indicate that their behavior has caused
a response by the system. Second, a flashing segment on the
recommendation sidebar is illuminated to display the sug-
gested alternative. This interface is shown in Figure 1.

The passive approach was chosen to avoid forcefully disrupt-
ing a user’s visual analysis behavior. Unexpected changes
to the visual presentation can break a user’s visual momen-
tum and slow his/her progress. However, the disadvantage
of the passive approach is that users may miss or ignore the
notification and stay with a sub-optimal visualization. Our
current approach was chosen based on informal experimen-
tation. More analysis of this passive/active tradeoff in user
interface design is an important area of future study.

Accepting Recommendations

A user can accept a recommendation with a single click on
the flashing recommendation segment shown in Figure 1.
In response to the user’s click, the HARVEST client sends
a ChangeView action to the HARVEST server specifying the
clicked recommendation.

On the server side, the action is processed first by the Ac-
tion Tracker which records the action and updates the user’s
task context ¢; if required. The context ¢; will change when-
ever there are new data constraints specified in the data trans-
formation description section of the recommendation. If ¢;
has changed, the Query Manager module issues a query to
get an updated set of data records. The updated data is
then passed to the Visualization Recommender to instantiate
the accepted recommendation. Finally, the HARVEST server
sends out the overall system’s response a;, which includes
both the instantiated visualization and updated c;.

Once the client receives a;, it updates the visualization can-
vas as well as the data constraints in the query panel (Fig-
ure la). The updated query panel informs the user of the

322

inferred data constraints which have been automatically in-
tegrated into ¢; and the new visualization. If the inferred
constraints don’t match users’ actual intent, the user can in-
teractively change the constraints directly through the query
panel.

EVALUATION

We have tested the BDVR approach extensively using the
HARVEST visual analytics system [7] on a set of investiga-
tive tasks over multiple data sets. In the study reported here,
the implementation of BDVR focused on two patterns: Scan
and Flip. Our study quantitatively and qualitatively com-
pared user task performance using HARVEST under two set-
tings: (1) with BDVR enabled, and (2) with BDVR disabled.
When BDVR is disabled, HARVEST uses only data properties
to recommend suitable visualizations.

Study Design and Methodology

We designed six visual analysis tasks using three distinct
data sets. Each of the following data sets was selected from
a real-world analytic task:

e Data set 1: data on the status of bridges in various U.S.
states from 1950 to 2005 (1836 records, 4 dimensions).

e Data set 2: social network data of a set of employees
(138 employees, each employee has 6 attributes).

e Data set 3: data on stock prices for Standard & Poor’s
500 companies from 1995 to 2001 (3500 records, 5 di-
mensions).

For each data set we designed two tasks, each of which asked
a user to find a set of targets that met certain criteria (e.g.,
stocks that belong to particular sectors and satisfy certain
performance criteria). By design, all tasks required users
to perform multiple data comparisons. To achieve a bal-
anced, within-subject comparison, two similar but not iden-
tical tasks were designed for each data set. For example, for
the stock data set, the two tasks focused on different sectors
and time ranges and used different performance criteria.

We recruited twenty users for our study, thirteen of whom
were male while seven were female. Their ages varied from
mid 20s to early 50s. They had some experience with gen-
eral visualization tools (e.g., Google Maps), but were not
visualization experts. We used a within-subject compari-
son methodology and asked each user to perform all 6 tasks.
Among the 6 tasks, 3 were performed using HARVEST with
BDVR enabled, and the other 3 with BDVR disabled. To
avoid potential biases such as learning effects, we permuted
the order and conditions of tasks.

Each user was given a 15-minute tutorial on HARVEST. For
each task, the user was first given the task description and
the question to be answered. They were then given access
to HARVEST which had the data set loaded and an initial
set of visualization recommendations. The top recommen-
dation was instantiated by default and the user was able to
switch to alternative visualizations with a single click. Be-
cause HARVEST knew nothing of the user’s analytic intent at
the beginning of a task, its initial visualization recommenda-
tions were based on data properties alone.

We allotted 10 minutes for each task and recorded the actual
task completion time, which was counted from the moment
when the user started using HARVEST to the moment when
the user claimed that the task was completed. During each
task, we also recorded the visualizations used and behavior
patterns detected. At the end of each task, we collected sub-
jective feedback via two questions. First, we asked the user
to rate the provided visualization recommendations on how
well the visual metaphors supported the tasks using a scale
of 1 (least) to 5 (best). We then asked users to comment on
the least liked and most liked aspects of HARVEST’s action
tracking and visualization recommendation features.

Results and Analysis

The data collected in our study shows that BDVR can effec-
tively detect user behavior patterns in 41 trials out of all 60
trials with BDVR enabled (69%). Moreover, users accepted
the visualization recommendations made based on the de-
tected patterns in 36 out of those 41 trials (88%).

We further analyzed both objective and subjective data to
assess the impact of BDVR on user task performance. We
first computed the mean task completion time over all the
tasks and users. With BDVR enabled, the mean comple-
tion time was significantly improved (p < 0.001 in ANOVA
test) from 357 seconds to 281 seconds, amounting to a 21%
reduction (Figure 6a). Based on our observations, the sig-
nificant reduction in time can be attributed to a reduction
in users’ visual inertia with BDVR enabled. The initial vi-
sualization provided by HARVEST based on data properties
alone was usually sufficient to give users an overview of the
data. However, the initial visualizations became less suit-
able later as users focused on specific visual comparisons. In
such situations, alternative visualizations were tried in 90%
of the trials with BDVR enabled versus 78% in the trials with
BDVR disabled. Moreover, of those that did explore alterna-
tive visualizations, users with BDVR chose task-appropriate
alternatives (e.g., rating higher than 3) more often than those
without BDVR. Accordingly, users were more likely to use
task-appropriate visualizations with BDVR enabled (82% of
the trials) than with BDVR disabled (55% of the trials). One
user commented:

“When it was flashing [to notify me of new recommenda-
tions], I realized that I was not using the best [visualiza-
tion]. So I switched to other visualizations [to find a better
one]. [It turned out] the flashing recommendation was pretty
good.”

We also measured task error rate by the percentage of ques-
tions that the users correctly answered. Our results indicated
a statistically significant difference in task error rate between
the two settings (p < 0.01) (Figure 6b). The mean error rate
across all tasks and users was reduced from 26.7% (without
BDVR) to 5.0% (with BDVR), an 81% reduction. We at-
tribute this sharp reduction to BDVR’s ability to help push
users towards visualizations that were more appropriate for
the visual comparisons they needed to perform in the tasks.

Users also indicated a subjective preference for behavior-

323

Time (sec)
Error rate (%)
N
o

m

w/ BDVR

w/o BDVR w/o BDVR

(a) (b)

Figure 6. Mean and 95% confidence interval of (a) task completion
time, and (b) task error rate with BDVR disabled or enabled

w/ BDVR

Visualization Type % of Detected Patterns
FanLens 52%
Social network diagram 80%
Parallel coordinates 69%
Bar chart 0%
Line graph 0%
Scatter plot 0%

Table 2. Six types of visualization used in the study.

driven recommendations because they felt that BDVR helped
them when they became “stuck” while using a particular
visualization. Over all the tasks, users overwhelmingly fa-
vored the top visualization recommendation with BDVR en-
abled (mean rating of 3.75 out of 5) over the recommenda-
tions with BDVR disabled (mean rating of 2.65).

Our data also provided insight on the influence of visualiza-
tion types on BDVR. Overall, there were 6 types of visual
metaphors used in the tasks. For each visualization type,
we computed the percentage of trials where a pattern was
detected out of all the trials where the visualization type
was used and BDVR was enabled (Table 2). The results
show that behavior patterns were more likely to be detected
for more sophisticated visualizations, which often encoded
complex data sets and required more user interaction to un-
derstand the data.

Finally, our study exposed three limitations of our current
work. First, some users felt that the system’s notification of
BDVR recommendations might be too subtle to notice. Cur-
rently, to avoid interrupting a user’s cognitive process, we
passively notified users by flashing the recommendation on
the right side of the browser. This was sometimes missed by
users who were concentrated on the visualization at the cen-
ter. Second, users wanted HARVEST to detect more complex
patterns. For example, users sometimes intermixed Filter
actions with Inspect actions to compare sets of stocks, cre-
ating patterns that are more complex than those captured by
our current set of pattern definitions. Finally, we observed
a few occasions where users abandoned a system-provided
recommendation to return to their original view. However,
because our recommendation was passively provided, users
did not complain. Moreover, despite these cases BDVR still
provides a statistically significant improvement in perfor-
mance.

CONCLUSION

In this paper, we described a novel approach to visualiza-
tion recommendation that detects and reacts to semantically
meaningful user behavior patterns during visual analysis. Our
approach, Behavior-Driven Visualization Recommendation
(BDVR), can recommend more accurate and task-relevant

visualizations than previous solutions. Moreover, our behavior-

driven approach can help overcome visual inertia by provid-
ing dynamic recommendations throughout a user’s ongoing
task that better match his/her evolving visual analytic intent.

We described our two phase BDVR algorithm and its im-
plementation within the HARVEST system. The first phase
monitors user interactions throughout a user’s task and ana-
lyzes the recorded behavior to detect semantically meaning-
ful patterns. The second phase recommends visualizations
that more effectively support the user’s implied visual task
which we inferred from the detected patterns.

Finally, we presented the results of a user study that demon-
strates the effectiveness of our approach. In comparison to
visual recommendations computed without behavior-based
feedback, BDVR yields statistically significant improvements
in both task completion time and task error rate. In addi-
tion, subjective user feedback suggests that users strongly
prefer BDVR recommendations over those provided when
behavior-based feedback is not used.

While our initial results are promising, there remain several
areas to explore in future work. In particular, more study
must be conducted to understand how aggressively recom-
mendations should be conveyed to the user. In general, rec-
ommendations that are too subtle are likely to be ignored by
users, while those that are too aggressive can interrupt the
user’s cognitive process. Finding the proper balance remains
a challenge. In addition, providing an explanation for why
a particular recommendation was suggested would make the
system’s behavior more transparent to users. Another topic
for future study is the incorporation of higher-level pattern
detection and generalization.

REFERENCES
1. E. Andre and T. Rist. Intelligent User Interfaces,
chapter 4 (The Design of Illustrated Documents as a
Planning Task), pages 94—116. AAAI Press/The MIT
Press, 1993.

. L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E.
Scheidegger, C. T. Silva, and H. T. Vo. Vistrails:
Enabling interactive multiple-view visualizations. In
IEEE Vis, 2005.

3. S. M. Casner. A task-analytic approach to the
automated design of graphic presentations. ACM Trans.
on Graph., 10(2):111-151, April 1991.

. M. Derthick and S. F. Roth. Data exploration across
temporal contexts. In IUI, 2000.

5. A. N. Dragunov, T. G. Dietterich, K. Johnsrude,

M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer:
a desktop environment to support multi-tasking
knowledge workers. In IUI, pages 75-82, New York,
NY, USA, 2005. ACM.

324

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. D. Franklin, J. Budzik, and K. Hammond. Plan-based

interfaces: keeping track of user tasks and acting to
cooperate. In 1UI, pages 79-86, New York, NY, USA,
2002. ACM.

. D. Gotz, Z. Wen, J. Lu, P. Kissa, M. Zhou, N. Cao,

W. H. Qian, and S. X. Liu. Harvest - visualization and
analysis for the masses. In IEEE InfoVis Poster, 2008.

. D. Gotz and M. X. Zhou. Characterizing users’ visual

analytic activity for insight provenance. In /IEEE VAST,
2008.

. D. Gotz and M. X. Zhou. An empirical study of user

interaction behavior during visual analysis. Technical
Report RC24525, IBM Research, 2008.

Y. Hijikata. Implicit user profiling for on demand
relevance feedback. In U1, 2004.

T. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model for
the visualization exploration process. In IEEE Vis,
2002.

A. Kobsa. An empirical comparison of three
commercial information visualization systems. In Proc.
of InfoVis, 2001.

M. Kreuseler, T. Nocke, and H. Schumann. A history
mechanism for visual data mining. In IEEE InfoVis,
2004.

J. Mackinlay. Automating the design of graphical
presentations of relational information. ACM Trans. on
Graph., 5(2):110-141, 1986.

D. W. Oard and J. Kim. Implicit feedback for
recommender systems. In AAAI Workshop on
Recommender Systems, 1998.

N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran.
Swish: semantic analysis of window titles and
switching history. In IUI, 2006.

A. Perer and B. Shneiderman. Systematic yet flexible
discovery: Guiding domain experts through exploratory
data analysis. In IUI, 2008.

M. D. Plumlee and C. Ware. Zooming versus multiple
window interfaces: Cognitive costs of visual
comparisons. ACM Trans. on Computer-Human
Interaction, 13(2), 2006.

S. E. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein.
Interactive graphic design using automatic presentation
knowledge. In CHI, 1994.

D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card.
The cost structure of sensemaking. In CHI, 1993.

J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A
hybrid learning system for recognizing user tasks from
desktop activities and email messages. In /U1, 2006.

Y. B. Shrinivasan and J. J. van Wijk. Supporting the
analytical reasoning process in information
visualization. In CHI, 2008.

M. X. Zhou and V. Aggarwal. An optimization-based
approach to dynamic data content selection in
intelligent multimedia interfaces. In UIST, 2004.

M. X. Zhou and M. Chen. Automated generation of
graphical sketches by example. In Proceedings of
IJCAI pages 65-74, 2003.

