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Abstract—Documents in rich text corpora often contain
multiple facets of information. For example, an article from
a medical document collection might consist of multifaceted
information about symptoms, treatments, causes, diagnoses,
prognoses, and preventions. Thus, documents in the collection
may have different relations across each of these various
facets. Topic analysis and exploration for such multi-relational
corpora is a challenging visual analytic task. This paper
presents SolarMap, a multifaceted visual analytic technique
for visually exploring topics in multi-relational data. SolarMap
simultaneously visualizes the topic distribution of the underly-
ing entities from one facet together with keyword distributions
that convey the semantic definition of each cluster along a
secondary facet. SolarMap combines several visual techniques
including 1) topic contour clusters and interactive multifaceted
keyword topic rings, 2) a global layout optimization algorithm
that aligns each topic cluster with its corresponding keywords,
and 3) 2) an optimal temporal network segmentation and layout
method that renders temporal evolution of clusters. Finally, the
paper concludes with two case studies and quantitative user
evaluation which show the power of the SolarMap technique.

Keywords-Visual Analytics, Multifaceted Information Visu-
alization, Temporal topic visualization

I. INTRODUCTION

Text mining techniques have been developed and applied
to identifying patterns such as topics from large corpus
in various domains. However, those topics need to be
understood by domain users in order to be useful. In
recent years, a number of visualization techniques have been
developed to assist in this challenge. Topic discovery and
visualization in particular has received significant attention
with several systems designed to mine and render clusters
of related documents. A commonly followed approach is to
use some variation of spatially arranged clusters, rendered
for example as a density map or an elevation map. The
spatial arrangement of these maps is used to represent
the relationship between clusters according to some metric,
while labels or tag-clouds can be added to convey some
aspect of information associated with each cluster.

While effective at showing an overview of a document
collection, the conventional approach is limited in its ability
to show multiple dimensions of information about the doc-
ument clusters simultaneously. In addition, these techniques
often make it difficult (if not impossible) to visually identify
relationships between individual documents, or how a doc-
ument fits within a given cluster. Unfortunately, many real-

world use cases require this sort of multi-relational, multi-
scale analysis.

For example, consider an analysis of a collection of
articles about various diseases. It is not enough for an
analyst to see which diseases fall into a given cluster. A
detailed analysis requires that the visualization convey why
two diseases may fall into the same cluster (e.g., shared
symptoms or treatments) or what overlap may exist between
two different yet nearby clusters.

To support the type of analysis described above, we
propose SolarMap, a new interactive visualization technique
that combines a labeled contour-based cluster visualization
with a novel radially-oriented tag cloud technique. SolarMap
enables multi-relational visualization of document collec-
tions at both the cluster and individual document scales.

As temporal dependent data such as social media, publi-
cations become upiquitous, topic evolution becomes an im-
portant problem for data mining community. There are many
temporal topic discovery methods: some assume smooth
topic evolution over time [1], [2]. However, less attention
has made to provide visual interactive mechanisms to detect
and explore the topics in the data in an effective manner.

To address these challenges, we propose SolarMap, a
visual analytic technique with the following key features:
A cluster-aligned multifaceted radial tag-cloud tech-
nique. SolarMap employs a novel tag-cloud display of mul-
tifaceted textual metadata that is arranged radially around
an interior cluster-based context preserving rendering of the
dataset. Color coding and optimized radial alignment are
used to tie tags to corresponding clusters without the need
for visually distracting edges. Multifaceted information is
laid out on to different radial rings of which one is shown
at any given time.
Rich coordinated interaction for visual analysis. So-
larMap provides a rich set of interaction tools coordinated
across all visual elements of the visualization to enable
detailed analysis at document and cluster scale. Dynamic
highlighting and edges are used to selectively pinpoint
relationships as users interact with visual objects. Controls
are also provided for users to switch between radial tag
rings to focus on facets of interest during the analysis of
multidimensional datasets.
Optimal temporal segmentation and layout method To
detect and visualize topic evolution, SolarMap detects signif-



Figure 1. Overview of SolarMap. The InfoVis research communities and their research topics in the year 1994.

icant changes of the clusters across different time segments
based on a hierarchical network sequence segmentation.
A dynamic visualization is developed to represent topic
distribution with smooth transition over time.

In this paper, we describe both the design and implemen-
tation of SolarMap. In addition, we demonstrate the power
of our approach through a case study and formal user study.
The results from our evaluation confirm the effectiveness
and general applicability of SolarMap for exploring multi-
dimensional relational datasets.

The rest of paper is organized as follows: Section II
reviews several areas of related work; Section III presents the
visualization design of SolarMap including the data model,
visual encoding and layout; Sections IV and V present a
case study and evaluation. Finally, the paper concludes in
Section VI with a review and discussion of future work.

II. RELATED WORK

This section highlights a number of related text visualiza-
tion techniques. Topics most relevant to SolarMap include
document content visualization, techniques for conveying
document relationships, and multifacet visualization tech-
niques.

A. Visualizing Document Content
Many conventional text visualizations are designed to

summarize the content of a document or document col-

lection. Perhaps most common is the tag cloud [3] which
displays a set of words arranged in rows with font sizes
that correspond to statistics such as term frequency. More
advanced tag clouds, such as Wordle [4] and Word Cloud
[5], enhance the appearance through more sophisticated
layouts. In other work, document cards [6] present the
content of a document collection using summary cards that
include highlighted figures and content topics. The Topic
Islands [7] approach uses wavelets to summarize the the-
matic characteristics of a single document. ThemeRiver [8]
visualizes topic evolution using a temporal plot showing the
ebb and flow of topic themes over time.

Some techniques attempt to augment the contents of a
document with limited relationship information. For exam-
ple, WordTree [9] and PhraseNet [10] focus on relational
word patterns within a given text. In particular, WordTree
considers the prefix relation between words at the syntax
level. PhraseNet allows user defined relationships.

In contrast with this prior work, SolarMap combines con-
tent visualization techniques with visual cues that represent
cross-document relationships across multiple facets.

B. Visualizing Document Relationships

Other text visualization techniques focus on displaying
relationships between documents in a collection. For exam-
ple, many visualizations [11], [12], [13] work by mapping a



set of documents to a 2D display according to document
similarity. Other projections, such as probabilistic latent
semantic model [14], can reveal topic clusters. However,
because of information lost when projecting from a high
dimensional space to 2D coordinates, it is often hard for
users to understand the semantic meaning of the resulting
clusters. SolarMap employs its own projection technique
to create document clusters. However, these clusters are
augmented with significant additional information designed
to convey more clearly what each cluster represents.

In other work, Collins et al. [15] introduce parallel tag
clouds (PTCs) to visualize text along multiple facets ar-
ranged as columns of words. Links across columns rep-
resent co-occurrence relationships. This technique can be
very powerful but is limited to word-level relationships.
In contrast, SolarMap can visualize more complex latent
relationships between documents.

C. Multifaceted Text Visualization

Most recently, a number of systems targeting multifaceted
text corpora have been proposed. These designs combine
multiple visual techniques to depict information about both
document content and inter-document relationships. For ex-
ample, ContexTour [16] and FacetAtlas [17] are two systems
in this category. ContexTour uses a multi-layer tag cloud
design that combines clusters with their layered tag clouds
which use one layer to represent the content of a cluster
for each facet. However, this “content-focused” design users
does not convey any information about individual docu-
ments/entities or their individual relationships. In contrast,
FacetAtlas provides a query based interface which focuses
specifically on visualizing complex multifacet relationships.
However, FacetAtlas shows no information about the actual
contents of the documents.

SolarMap captures the advantages of both ContexTour and
FacetAtlas within a single integrated visualization technique.
To highlight the benefits of our approach, Section V provides
the results from a formal user study which compares the
ContexTour and FacetAtlas techniques with SolarMap in an
objective task-oriented evaluation.

III. METHOD

This section describes the details of the SolarMap visual-
ization technique. We first review the SolarMap data model
and describe how document corpora are transformed to fit
into this model. We then define the visual encodings and
layout algorithm used to render the transformed data for
display.

A. Data Model and Transformation

Documents are typically unstructured in nature. Visualiz-
ing the content of a document corpus and the relationships
between documents requires that these unstructured artifacts
be transformed into a structured form. SolarMap uses a

multifaceted entity relational data model to represent this
information in a structured way. Figure 2 illustrates the pro-
cessing pipeline used to transform a set of raw unstructured
documents into our data model.

The first stage in the transformation pipeline is facet
segmentation. During this stage, each document is seg-
mented into facet snippets. While various techniques could
be used, we typically employ a topic modeling technique
such LDA [18] and treat each topic as a facet. When pro-
cessing documents with a well defined structure (e.g. online
Google Health documents which have standard sections for
symptoms, treatments, etc.), we directly use the sections to
define facet snippets.

Entity extraction is the second transformation pipeline
stage. In this step, a named entity recognition algorithm is
applied to each facet’s document snippet to generate a set of
typed entities. Domain-specific ontology models are used to
recognize meaningful entities for each facet. For example,
in Google Health documents, entities in the symptom facet
could include “increased thirst” or “blurred vision”, while
“type 1 diabetes” and “type 2 diabetes” are entities in the
disease facet.

The third and final stage in the processing pipeline is
relation building. In this stage, connections between ex-
tracted entities are established using two types of relations:
internal relations and the external relations. An internal
relation connects entities within the same facet. For exam-
ple, the entities “type-1-diabetes” and “type-2-diabetes” are
connected within the disease facet by an internal relation.
An external relation is a connection between entities from
different facets. For example the disease “type-2-diabetes”
is connected to the symptom “increased thirst” by an ex-
ternal relation because “increased thirst” is a symptom of
“diabetes-type-2”.

B. Design Principles and Visual Encoding

The visual encoding used to represent the information in
the SolarMap data model is motivated by several key design
principles.

Focus + Context. In SolarMap, there is one facet selected
at any given time to serve as the topic facet. Entities in the
topic facet (which we call topic entities) are considered in
focus and are rendered as nodes arranged within the central
region of the visualization. The topic entities are clustered
by their internal relations to determine the nodes’ spatial
positions. Contours are then rendered to further highlight the
cluster structures. The value of each topic entity is rendered
on top of the node, resulting in a clustered tag cloud of topic
entity labels.

All other facets in the data model are considered keyword
facets. Keyword facets are visually encoded as surrounding
rings that circle around the central topic cluster region.
Entities within a keyword facet are called keyword entities.
Only keyword entities from a single selected keyword facet



Figure 2. Data transformation process and the multifaceted entity-relational data model.

Figure 3. Visual Encoding

are rendered at any given time. Keyword entities are dis-
played as radial tag clouds and provide secondary contextual
information about each cluster. The radial tags are grouped
based on the clusters identified along the primary topic
facet. This forms wedge-shaped sections along each ring
which one wedge for each cluster. The size of each wedge
indicates the size of the corresponding topic cluster, and the
correspondence between cluster and wedge is captured using
both color and position.

For example, in Figure 3, Disease is selected as the
topic facet with “Type-1-Diabetes” being one topic entity.
Symptoms and Treatments are both keyword facets. In this
example, Symptoms is the selected keyword facet resulting
in keyword entities such as “blurred vision” and “increased
thirst” being visualized along the corresponding ring. These

entities appear in the blue wedge of the symptom ring
because they are common symptoms for diseases in the blue
cluster found in the center of the figure.

Content + Relations. SolarMap is designed to provide
a unified visualization of both content entities and the rela-
tionships between them. As mentioned above, topic entities
and keyword entities are rendered as clustered tag clouds
and radial tag clouds, respectively. Internal relations in the
topic facet are encoded by screen distance between primary
entities. External relations are encoded as lines that each
primary entity with related keyword entities in the selected
facet ring. Each line is colored by its topic entity’s cluster
and line thickness represents the number of topic entities
related to the same keyword entity.

Rich Interaction. SolarMap includes a number of inter-
active features to enable rich data exploration. In addition to
traditional tools like dynamic query and filtering, two more
sophisticated interactions are supported. First, SolarMap’s
context switch capability allows users to change both the
center topic facet and the surrounding keyword facets. Users
can change the facet assigned to be the topic facet by double-
clicking on any keyword facet ring. Users can change the
selected keyword facet by single-clicking on a facet ring.

The other powerful interactive feature provided by So-
larMap is relation highlighting. By default, the lines repre-
senting relations are not rendered to limit visual complexity.
Moving the mouse over any entity selectively displays the
lines representing its external relations. The textual tags for
connected entities are also highlighted. Multiple selection,
via mouse clicks, is also possible to highlight relations
across multiple entities simultaneously. This technique is
very effective at supporting entity comparison across various
keyword facets.



(a) (b) (c)

Figure 4. SolarMap Layout. (a)cluster center detection, (b)keyword wedge reordering, (c)optimized cluster alignment

C. Layout

The design outlined above introduces several constraints
on the SolarMap layout. Fortunately, some of the constraints
are well studied problems where existing techniques can
be leveraged. For example, the radial tag cloud layout can
utilize prior designs such as TextArc1. However, there are
also some new layout challenges. In particular, we must align
topic clusters with their corresponding keyword ring wedges
to help users map between these two facets of information.

Generally speaking, the SolarMap layout algorithm has
two major steps. In the first step, we arrange topic entities in
the central area of the visualization using a stabilized graph
layout algorithm. The positions are then used to generate
contours using a kernel density estimation technique. In
the second step, keyword clusters are positioned on the
surrounding ring within wedges that are ordered to reduce
line crossings and positioned align with their corresponding
topic clusters.

1) Topic Cluster Layout: The set of topic entities are
connected via internal relations to form a graph as illustrated
in Figure 2. During topic cluster layout, a stabilized graph
layout algorithm [19] applied to this graph. It minimizes the
following energy metric:

min(∑
i< j

1
d2

i j
(||Xi−X j||−di j)

2 +∑
i< j
||Xi−X ′i ||2) (1)

The first term in this equation places pairs of strongly-
connected entities next to each other by minimizing the
difference between screen layout distance (||Xi−X j||) and
graph distance (di j). The second part of the equation is a
smoothness term which minimizes the change in distance
between an entities position at sequential time-steps during
animation.

After laying out the entities, we render contours to
highlight clusters using kernel density estimation [20]. This

1http://www.textarc.org/

algorithm places a Gaussian kernel over each entity and
uses the joint distribution f (x,y) of these kernels as the
approximated information density. We adjust the bandwidth
of each kernel to get distribution with a high degree of
smoothness. Finally, contour lines are generated using a
contour plotting algorithm [21]. The details of this approach
are described in [17].

2) Keyword Cluster Layout: After the topic clusters are
positioned, this step positions the color-coded keyword
wedges on the surrounding facet ring next to their corre-
sponding topic clusters. The wedges within the ring are first
reordered based on the centroid of each topic cluster. This
reduces line crossings when external relations are displayed.
Then, a force based optimization model is used to rotate the
ring such that the distances between the wedges and their
related topic clusters is minimized.

Cluster Center Detection. Center detection for each topic
facet cluster Ci begins by first extracting its kernel set C′i .
Using the kernel set we detect and remove any outlier
entities that are far away from other cluster members.
Then, the convex hull P of C′i is computed and used as
cluster boundary. Finally, a center of mass is computed
by considering the joint kernel density distribution f (x,y)
within the boundary P using the following formula:

Cx =

∫
x f (x,y)dx∫
f (x,y)dx

, Cy =

∫
y f (x,y)dy∫
f (x,y)dy

(2)

To accelerate the layout process, we treat the density
distribution as a constant. This approach reduces the above
formulas to the following:

Cx =
1

6A

N−1

∑
i=0

(xi + xi+1)(xiyi+1− xi+1yi)

Cy =
1

6A

N−1

∑
i=0

(yi + yi+1)(xiyi+1− xi+1yi)

(3)

where A is the area of P, (xi,yi) is the ith vertex of
polygon P.



Keyword Wedge Ordering. To reduce line crossings and
minimize the distances between keyword wedges and their
associated topic clusters, we organize the wedges based on
the angular position of the topic clusters using a projection
line technique. We first project the center of each topic
cluster’s contour Ci out to the surrounding ring by using
a projection line that starts at the center of the visualization
canvas. The projection line for Ci intersects the facet ring at
point pi as shown in Figure 4(b). The radial order of these
positions are then used to order the keyword wedges.

Optimized Cluster Alignment. After ordering the wedges,
the final step is optimized cluster alignment which rotates
the keyword facet ring to an angle that best aligns each
wedge with its corresponding topic cluster. The alignment
is accomplished through the force-based optimization model
defined below.

min∑
i
( fi× r× cos(αi)) (4)

The model minimizes the sum of the computed forces
for all external relations i between the topic entities and
the displayed keyword entities. The force equation is based
on the moment of force where fi is a spring-force equation
based on the distance between the pair of related entities,
r is the radius of the ring, and αi is the angle of the
edge representing the relation. These terms are illustrated
in Figure 4(c). This model will rotate the facet until the
sum of the forces is minimized, resulting in a ring that is
optimally aligned with the interior topic entities.

3) Temporal Sequence Layout: In the presence of time-
evolving topics, we propose a visualization technique that
displays topic cluster changes in a smooth and continuous
fashion so that users can easily follow the underlying topic
shifts. Recall that the layout algorithm is based on graph
visualization. Therefore, when we visualize an evolving
graph over time, the stability over time need to be enforced.
To encode the temporal constraints, we propose a recursive
temporal segmentation method to partition a sequence of
graphs into a set of graph segments. Such a segmentation
can be done recursively to further group graph segments into
longer segments as shown in Figure 5.

Formally, given a graph sequence GS = {G1,G2, . . . ,GT},
the k-partitioning of GS is to partition the graph sequence
GS into k segments S1,S2, . . . ,Sk, each has size Ti. And T =

∑1≤i≤T Ti. Specifically, segment Si consists of Gsi , . . . ,Gei

for 1 ≤ i ≤ k, where si(ei) is the starting(ending) index
for segment Si. A graph segment Si can be approximated
by averaging all the graphs within Si, denoted by Si. The
approximation error for Si is

sse(Si) = ∑
si≤ j≤ei

‖G j−Si‖ (5)

where ‖G j−Si‖ defines as the number of inconsistent edges.
Then through dynamic programming, we can formulate the

Figure 5. Graph sequence segmentation and the context preserving layout
algorithms.

problem of finding the best k-partitioning of GS such that the
total error ∑1≤i≤k sse(Si) is minimized. We define the cost
function F(T,k) as the minimal cost of partitioning graph
sequence GS = {G1, . . . ,GT} into k segments. The following
recursion defines the optimal substructure for the dynamic
programming:

F(T,k) = min
t<T

(F(t,k−1)+ sse(Sk)) (6)

where Sk = {Gt+1, . . . ,GT}. This recursion says the minimal
cost for partitioning graph sequence GS into k segments is
the optimal sum of the minimal cost for partitioning a subset
of GS into k−1 segments and the error of the last segment
Sk.

By solving such dynamic programming problems for
different k, we can construct a multi-level Directed Acyclic
Graph (DAG). The resulting structure is not necessarily a
tree in general. Following a topological order of DAG, we
can layout the graph sequence in a top-down fashion. In this
process, the position of node x of graph G depends on both
the structure of G as well as the positions of x in G’s parent
graphs.

The layout method will preserve the stability of topic
clusters over time, which can be used for visualizing any
dynamic topic modeling results.

IV. CASE STUDIES

To demonstrate the utility of our approach, we applied
SolarMap to two use cases. First, we developed a healthcare
application to analyze the Google Health library which
contains over 1,500 online articles. Each article describes a
single disease in multiple sections such as disease overview,
treatment, symptoms, cause, diagnosis, prognosis, preven-
tion and complications. Second, we developed a tool to vi-
sualize research community evolution using DBLP data. The
DBLP dataset spans from 1992 through 2002, and includes
over 800 researchers, 614 papers and 2000 keywords.



Figure 6. SolarMap visualization of the Google Health library.

Figure 7. Case Study on Diabetes

A. Case Study One: Healthcare

The Google Health data has several facets. For our initial
exploration, we selected disease name as the topic facet. The
diseases appear as topic clusters in the center of Figure 6.
Other facets are visualized using the surrounding keyword
rings.

A key strength of SolarMap is the ability to explain
relations between entities. For example, SolarMap can easily
explain how two diseases are related to each other. To do
that, we double click on the diseases we wish to compare
to select them. This highlights the external relations for the
selected diseases as as shown in Figure 7. By switching
through different keyword facets (e.g, symptom, complica-
tion, and cause), we can easily observe that Type-1-Diabetes
and Type-2-Diabetes are related because they share similar

symptoms such as “increased urination” and “fatigue”, as
well as similar complications such as “kidney disease ” and
“Stroke”. However, they do not share any common causes.
This case study demonstrates the capability of SolarMap to
explain clusters through the links between topic clusters and
keyword clusters.

B. Case Study Two: DBLP

(a)

(b)

Figure 8. Case study on DBLP data. (a) In 1996, visualization communities
were rather isolated but began to study similar topics. (b) By 1999, the
communities were collaborating more closely and had even more research
topics in common.

Time plays an important role in the DBLP dataset as it
captures the evolution of research topics and teams over
several years. This case study examined changes in the
InfoVis community from 1992 through 2002. As illustrated
in Figure 1 and Figure 8, we use author names as the topic
facet, and paper keywords grouped by year as the keyword
facets. The years are ordered allowing easy navigation
through time using the keyword rings.

Exploring the data year by year, we found some inter-
esting evolution patterns. In the first years, such as 1994
(see Figure 1), several isolated author clusters emerged. The
largest were led by Ben Shneiderman and Stuart K. Card.



Shneiderman’s cluster focused most on interaction designs
such as “dynamic query” and information exploration such
as “information seeking and retrieval”. In contrast, Card’s
group focused more on “graphical representation” and “ex-
plorative data analysis”.

In 1996, researchers in both clusters began working on
a few similar topics such as “Information Visualization”
and “User Interface”, as indicated by the common links
to those keywords on Figure 8(a). However, as shown by
the author clusters, the research communities were still not
directly collaborating. However, by 1999, the clusters begin
to merge. This merger, as shown in Figure 8(b), occurs
around the time that Card and Shneiderman join as two of
the co-authors on the book “Using Vision to Think”.

V. EVALUATION

In addition to the case studies described above, our system
was evaluated quantitatively through a formal user study.
This section describes the study’s design and presents both
objective and subjective results.

(a)

(b)

Figure 9. Baseline systems in our user study. (a) ContexTour, the disease
tag clouds (left) and related symptoms tag clouds (right). (b) FacetAtlas,
the disease view (left) and Type-1-Diabetes’ symptoms view (right).

A. Study Setup
To evaluate the effectiveness and efficiency of SolarMap

in support of multifaceted data analysis, we conducted a
comparison study. Our study compared SolarMap with two
baseline systems: ContexTour [16] and FacetAtlas [17].
See Section II-C for a comparison of features in these two
baselines with the features of SolarMap.

Tasks. We applied all three systems to the same Google
Health dataset and and users in our study to perform a series
of analysis tasks. The tasks in our study were as follows:

• T1: Identify all clusters of diseases that match the
query term ”diabetes”. This task tests a tool’s ability
to convey clusters.

• T2: Identify the top 3 symptoms for a specified disease
cluster. This task tests how well a tool allows users to
interpret of clusters.

• T3: Identify the top 3 symptoms shared between two
specified disease clusters. This task tests a tool’s ability
to compare clusters across specific facets.

These tasks increase in complexity from relatively simple
(T1) to complex (T3). The tasks were chosen to simulate a
common self-care education scenario for chronic diabetic
patients. Together, these three tasks represent a concrete
use-case of analyzing the Google Health library for self
diagnosis.

Participants and Methodology. We recruited 15 partici-
pants for our study (9 researchers and 6 students majoring in
computer science, psychology and mathematics). Inspired by
the repeated-measures study methodology [22], we divided
the participants into three groups of 5. The first group
used FacetAtlas for task T1, ContexTour for task T2, and
SolarMap for task T3; the second group used the ContexTour
for task T1, SolarMap for task T2 and FacetAtlas for task
T3; finally the third group used SolarMap for task T1 and
FacetAtlas for task T2 and ContexTour for task T3. At the
beginning of each user session, We gave a brief tutorial of all
three systems. The participants were then asked to complete
the three assigned tasks.

We recorded two objective measures: task completion
time (the time spent on each task, measured in seconds), and
task success rate (the percentage of assigned tasks completed
successfully). We computed the mean and standard deviation
of task completion time and task success rate across all users
and tasks.

We also recorded subjective measures via user surveys.
We compared SolarMap with the two baseline systems on
aesthetics, ease of use and usefulness. To further evaluate the
design of SolarMap, we asked users to score specific aspects
of the visualization in terms of (1) usefulness (how useful a
system is for solving a specific task) and (2) usability (how
easy the system was to use for a specific task).

B. Objective Results

As shown in Figure 10(a), the baselines systems (Con-
texTour and FacetAtlas) both exhibit an increasing trend
in task completion time from T1 to T3. This confirms the
increasing complexity across tasks. For the relatively simple
task T1, all three visualizations perform equally well with
less than 4 seconds spent on the task on average. For the
medium difficulty task T2, SolarMap shows a small advan-
tage when compared to baseline methods while FacetAtlas
requires significantly more time. This is because FacetAtlas
requires an context switch to view individual symptoms,



Figure 10. Study results comparing (a) task completion time and (b) task
success rate.

while ContexTour and SolarMap can directly present the
related symptoms on the same view.

For the most complex task T3, SolarMap outperforms
both baselines significantly. Interestingly, SolarMap requires
less time on T3 than T2, despite T3 being the most complex
task for both baseline systems. We believe that the major
reasons for this are that (1) the relation highlighting fea-
ture of SolarMap helps users to quickly identify common
symptoms, and (2) the shorter list of shared symptoms in
T3 (compared to the longer list of symptoms in T2) makes
it easier to identify the top thee symptoms.

These results show that SolarMap provides a strong re-
duction in task completion time for more complex tasks. In
particular, a two-way repeated measures ANOVA analysis
shows that when compared with the FacetAtlas system
on T2, both SolarMap and ContexTour yield a significant
efficiency improvement (T2, SolarMap p = 0.014 < .05,
ContexTour p = 0.018 < .05). Similarly, the performance
improvement on T3 is also significant (T3, SolarMap p =
0.005 < .05, ContexTour p = 0.014 < .05). In both cases
SolarMap performs best, and for task T3 SolarMap is
significantly better than ContexTour (p = 0.003 < .05).

We also compared task success rates as shown in Fig-
ure 10(b). Both SolarMap and the ContexTour achieve
similarly high accuracy levels. Only one error was observed
for each of these systems. In contrast, the FacetAtlas yielded

lower success rates on both tasks T2 and T3. We believe the
drop in accuracy was due to the need for a context switch
between diseases and symptoms when using FacetAtlas
which may have forced users to lose the context of the
original clusters. This is further evidenced by the fact that
these least accurate tasks (FacetAtlas T2 and T3) were also
the ones that users spent the most time completing.

C. Subjective Results

Figure 11. (a) Comparison of ratings for aesthetics, ease of use, and
usefulness of the three designs. (b) Usability feedback for SolarMap’s key
features.

In addition to the quantitative results presented above,
we gathered subjective feedback through user surveys. All
participants were asked to compare SolarMap with Contex-
Tour and FacetAtlas in terms of aesthetics, ease of use and
usefulness. The survey asked users to score each method
from 1 (lowest) to 5 (highest) in each of these dimensions.
The results are shown in Figure 11(a). In terms of aesthet-
ics, users liked both FacetAtlas and SolarMap more than
ContexTour. Ease of use scores were relatively even across
all three tools. However, when considering usefulness, users
felt that SolarMap was the most useful visualization among
three.

Finally, we collected qualitative user feedback on the key
capabilities of SolarMap. For each of four capabilities (find
entity related topics, find cluster related topics, find topic
overlaps of entities, and find topic overlaps of clusters) we
had users provide scores (from 1 to 5) for usefulness and
ease of use. Figure 11 summarizes the results. All features
exhibited fairly high scores for both usefulness and ease of
use. This confirms that users felt comfortable with SolarMap
and were confident in its ability to support the assigned
analysis tasks.



VI. CONCLUSION

This paper presents SolarMap, a multifaceted visual ana-
lytic technique for visually mining and exploring topics in
temporally evolving multi-relational data. SolarMap simul-
taneously visualizes the topic distribution of the underlying
entities from one facet together with keyword distributions
that convey the semantic definition of each cluster along a
secondary facet, and also provides smooth visual transition
of temporal evolution of topic clusters. As described in this
paper, SolarMap combines several visual techniques includ-
ing 1) topic contour clusters and interactive multifaceted
keyword topic rings, 2) a global layout optimization algo-
rithm that aligns each topic cluster with its corresponding
keywords and 3) optimal temporal segmentation of evolving
topic sequences.

We also described two use cases where SolarMap can be
applied and conducted a formal user study to compare our
new technique with two competing baseline systems. Both
the objective and subjective results from our study show
that SolarMap outperforms the baseline systems in many
areas. In future work, we plan to apply SolarMap to more
applications, to conduct more thorough user studies.
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