
RC25132 (W1103-173) March 29, 2011
Computer Science

IBM Research Report

Dynamic Voronoi Treemaps: A Visualization Technique for
Time-Varying Hierarchical Data

David Gotz
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Dynamic Voronoi Treemaps: A Visualization Technique for
Time-Varying Hierarchical Data

David Gotz

Abstract— Treemaps are a widely used technique for the visualization of hierarchical data. In general, these techniques perform
a space-filling recursive subdivision of a 2D space where the sizes of the created regions correspond to values of a particular data
attribute. Several subdivision algorithms have been proposed to optimize specific criteria, such as region aspect ratio or stability.
However, these goals are often contradictory. For example, existing layout algorithms that optimize for aspect ratio—important for
legibility—are typically not stable. For this reason, Treemaps are rarely used in animated displays of time-variant data. When they
are applied to dynamic data sets, unstable Treemap layout algorithms produce poorly animated transitions that include discontinuous
jumps in region position when values change. This paper introduces a new technique called Dynamic Voronoi Treemaps. Our layout
algorithm is specifically designed to support smooth, real-time animation of time varying hierarchical data while maintaining desirable
aspect ratios. We describe our novel approach and outline how it overcomes key limitations of prior Voronoi-based Treemap work to
enable the visualization of dynamic data. Results from an evaluation study of the technique are provided along with a brief use case
highlighting a real-world application of Dynamic Voronoi Treemaps.

Index Terms—Information Visualization, Temporal Visualization, Treemaps, Voronoi Treemaps

1 INTRODUCTION

Hierarchical data structures are a widely used data abstraction for the
organization and classification of information. Hierarchies have been
utilized in a vast array of applications ranging from corporate organi-
zational charts to computer file systems to the stock market. Given the
ubiquitous nature of these data structures, hierarchical visualization
techniques have received significant attention within the Information
Visualization community.

One of the most well-known and widely used methods for visual-
izing hierarchical data is the Treemap [9]. First proposed by Johnson
and Shneiderman in 1991, the Treemap is a space-filling visualization
technique. A recursive spatial sub-division algorithm is used to create
an arrangement of nested rectangles. The size of each rectangle en-
codes the value of an attribute of the data set (e.g., the size of a file
or directory when visualizing a file system) while the nested rectan-
gles represent children (e.g., files and sub-directories contained within
a directory).

In subsequent years, several variations to the original Treemap al-
gorithm have been proposed (e.g., [5, 17]). Many of these alternatives
have attempted to reduce the often high aspect ratios of rectangular
regions produced by the original algorithm. However, these improve-
ments to aspect ratio typically come at the cost of increased instability
[13]. None of these algorithms offer both full stability and ideal aspect
ratios. As a result, Treemap applications have largely been applied to
relatively static data sets where the sizes of cells do not change sig-
nificantly over time. Developing a Treemap layout with both stability
during animation and desirable aspect ratios remains an open problem.

To address this challenge, this paper presents the Dynamic Voronoi
Treemap (DVT), a novel Treemap layout algorithm which provides
both layout stability and desirable aspect ratios. As a result, DVTs
enable smooth continuous animation between states when presented
with dynamic data (see Figure 1). Unlike prior work in animating
Treemaps for dynamic data (e.g., [8]), DVTs do not introduce holes
or require overlapping regions during the animation sequence. In con-
trast, DVTs maintain a complete space-filling tessellation of the dis-
play space throughout all animated transitions.

The DVT technique is motivated by the work of Balzer and Deussen

• David Gotz is with the IBM T.J. Watson Research Center, E-mail:
dgotz@us.ibm.com.

on Voronoi Treemaps [1]. Similar to Voronoi Treemaps, our algorithm
uses an iterative optimization-based layout procedure and exploits the
added layout flexibility made possible by using non-rectangular re-
gions. However, the DVT algorithm approaches the hierarchical tes-
sellation process differently.

In contrast to prior work, our novel layout algorithm produces a
complete multi-level Voronoi tessellation at every optimization step.
This is made possible by re-ordering the Voronoi computations and
introducing a warping stage into the layout algorithm. The result is a
Treemap layout that (1) is stable, (2) has regions that have very low
aspect ratios, and (3) supports smooth animation where regions are
easy to follow over time.

We have applied the DVT algorithm within a system administra-
tion application to visualize in real-time the job scheduling behavior
of a massively parallel high-performance computing system. Results
from our user study indicate that users found it significantly easier to
perform two different tasks using the DVT-based visualization when
compared to a similar tool based on the squarified Treemap layout al-
gorithm.

2 RELATED WORK

Treemaps have a long history with research efforts focusing on several
important aspects of the visualization technique. In this section, we
review a sampling of related work to put our contributions in context.

2.1 Treemap Visualizations
Treemaps are a widely used technique for visualizing hierarchical data.
Originally proposed by Johnson and Shneiderman in 1991 [9, 12],
Treemaps use a recursive space-filling algorithm to subdivide a two-
dimensional plane into nested regions. The size of each region corre-
sponds to the value of a data element and the nesting depth corresponds
to the depth of the data element in the corresponding hierarchical data
structure. The original layout algorithm was successful at portraying
the structure of complex hierarchies such as computer file systems.

Following up on this initial work, several alternative layout algo-
rithms have been proposed to make Treemaps a more effective visu-
alization technique. For example, Cushion Treemaps [15] introduced
a shading techniques to make the structure of the data hierarchy more
apparent.

Other work has focused on improving the shape or position of the
rectangular cells produced during the subdivision process. For exam-
ple, Squarified Treemaps [5] avoided the long and thin rectangles pro-
duced by the original Treemap algorithm that made it harder to judge
the relative size of regions and obscured small areas. The squarified

(a) (c)(b)

Fig. 1. This DVT sequence shows job resource utilization within a massively parallel high-performance computer system. Cell size indicates the
fraction of system resources allocated to a job. Jobs are clustered by uniquely colored dispatch queues, with color intensity reflecting a key job
performance metric. (a) Initially, the job marked with a star is using only a moderate amount of resources. (b) Over time, the job grows to become
the most resource intensive on the system. (c) By the end of the sequence, the starred job has grown so large that its dispatch queue is using
more than its share of system resources. The DVT’s ability to smoothly animate this behavior allows a system technician to better understand the
system’s resource dynamics and diagnose problems.

algorithm is designed instead to create regions that have aspect ratios
as close to one as possible.

Unfortunately, as observed by Shneiderman and Wattenberg [13],
most algorithms that reduce aspect-ratio have the negative effect of
introducing layout instability when used to render dynamic data that
changes over time. They propose an ordered layout algorithm that
strikes a balance between stability and aspect ratio. However, a mea-
sure of instability remains and aspect ratios are not ideal.

A limitation shared by all of the above Treemap techniques is that
none of them produce both a stable layout (which is required for
smooth animation of dynamic data) and ideal aspect ratios. The ef-
fect of the trade-off between these two desired properties can be seen
online via a comparison tool hosted by the University of Maryland
[18].

2.2 Non-Rectangular Treemaps

The vast majority of Treemap algorithms have focused on rectangu-
lar regions that are subdivided into smaller rectangular cells. How-
ever, non-rectangular regions have been examined. One approach is
to combine smaller axis-aligned rectangles together into larger polyg-
onal regions [11]. This produces a subdivision of interlocked concave
regions.

More recently, Balzer and Deussen proposed Voronoi Treemaps [1]
and used them to visualize software structures [2]. This technique uses
an optimization-based layout algorithm to create Treemaps composed
of nested convex polygonal shapes. The resulting regions have excel-
lent aspect ratios. However, the algorithm does not produce layouts
suitable for animation. This is in contrast to our novel DVT algo-
rithm which is designed specifically to support animation. Because of
the strong connection between Voronoi Treemaps and our own work,
Section 3 discusses the original algorithm and its limitations in more
detail.

2.3 Treemaps Applied to Dynamic Data
Any Treemap technique can be used to visualize dynamic data. How-
ever, the lack of stability that afflicts most Treemap layout algorithms
manifests itself during animation as potentially large discontinuous
jumps in the position and dimensions of individual cells. These jumps,
most problematic for algorithms that produce the best aspect ratios,
are highly disruptive to users. As a result, several techniques have
been developed to allow improved temporal animations of Treemap
visualizations.

In some cases, new algorithms have been developed that sacrifice
aspect ratio in order to produce an ordered layout of cells (e.g., [3, 14]).
Even with larger aspect ratios, however, these algorithms only improve
stability. They do not eliminate it.

In other work, Fekete and Plaisant [8] propose a two-stage process
for animating between two Treemap configurations. In the first stage,
regions are linearly translated across the screen from old position to
new position. In the second stage, region sizes are animated from the
old size to the new size. This technique avoids discontinuous jumps
during animation. However, the first animation stage produces both
overlapping regions and holes in the layout which make the transition
hard to follow. In contrast, DVTs support smooth single-stage anima-
tions that do not introduce any overlapping regions or holes.

3 VORONOI TREEMAPS

The Voronoi Treemap (VT) algorithm differs significantly from its pre-
decessors. It produces non-rectangular spatial subdivisions that exhibit
high quality aspect ratios that are close to one. However, it suffers from
certain properties that make it unsuitable for animating the display of
changing data values. In this section, we first review the basic Voronoi
Treemap algorithm. We then describe in detail how dynamic data can
be problematic for this approach.

3.1 Review of Voronoi Treemap Algorithm
VTs are composed of nested planar Voronoi tessellations. This section
provides a brief overview of several key Voronoi tessellation concepts

Fig. 2. A bounded planar Voronoi tessellation. The bounding region B
is drawn in red. The inner polygons are the Voronoi regions R, each of
which contains a single generator gi.

and present a high-level summary of the VT algorithm. A more de-
tailed discussion is beyond the scope of this paper and can be found in
prior work [1].

3.1.1 Voronoi Tessellations
A Voronoi tessellation (also called a Voronoi diagram) is a partitioning
of space into regions based on distances to a set of objects within the
space. These objects are often called generators. In this paper, we
consider only planar Voronoi tessellations which partition a 2D plane.
Moreover, we limit our discussion to generators which are 2D points.

Planar Voronoi Tessellations. A planar Voronoi tessellation using
a set of n generators G := {g1, ...,gn} produces a corresponding set
of n regions R := {r1, ...,rn} such that (a) each region ri contains ex-
actly one generator gi and (b) every point within a region ri is closer
to gi than to any other generator in set G. Voronoi tessellations may
be unbounded (a partition of the entire ℜ2 plane) or bounded (a par-
tition of a region B defined within the plane ℜ2). In this paper, we
focus on bounded planar Voronoi tessellations. An example of such a
tessellation is shown in Figure 2.

Traditional Voronoi tessellations are calculated using a Euclidean
distance metric. As a result, each generator is treated with equal
weight, and region boundaries cross exactly midway between genera-
tors. This is captured by the following Euclidean metric where gi is a
generator and p is a point in ℜ2:

distancee(gi, p) := ‖gi − p‖ =
√

(xgi − xp)2 +(ygi − yp)2 (1)

Weighted Voronoi Tessellations. Alternative distance metrics can
be used when generating a Voronoi tessellation to influence the relative
sizes of each region. Using a weighted metric, region boundaries will
typically not cross midway between sites. Instead, boundaries will be
closer to low-weight generators and further from high-weight genera-
tors. This property is critical for Voronoi-based Treemaps where each
region’s size must be scaled based on the data value that it represents.

In this paper, we utilize the additively weighted power (AWP) dis-
tance metric (Equation 2) which produces polygonal regions much like
the classic Euclidean metric. Given a set of generators G, we define
a corresponding set of weights W := {w1, ...,wn}. These weights are
used within the AWP distance metric as follows:

distanceawp(gi,wi, p) := ‖gi − p‖2 −wi (2)

Centroidal Voronoi Tessellations. Centroidal Voronoi tessella-
tions (CVTs) are a special type of tessellation where the generator
gi for each region ri is located at the center of mass of the region [6].
Such tessellations are relevant because they exhibit desirable aspect
ratio properties. It is this property that has led to applications of CVTs
within the visualization community [1, 7].

The iterative Lloyd’s method [10] can be used to obtain a CVT for
a set of generators G. The calculation begins with an initial set of gen-
erators G and the corresponding Voronoi regions R. On each iteration,

Fig. 3. The Voronoi Treemap algorithm performs a series of sequential
tessellations as it recursively calculates its overall layout. In the data
hierarchy shown here, five tessellations are required as indicated by the
colors. The top level tessellation (for the red nodes) must iteratively con-
verge prior to computing the Voronoi tessellation for the blue nodes. A
complete tessellation is not available until the purple nodes are reached.

(a) (b)

(c) (d)

Fig. 4. A Voronoi Treemap for the data hierarchy in Figure 3. The layout
begins by (a) choosing a set generators, one for each child of the top
level data element (red nodes). (b) Lloyd’s method is used to iteratively
compute a weighted centroidal Voronoi tessellation. After the iteration
converges, the process is applied recursively. (c) Generators are cho-
sen within each sub-region and (d) new tessellations are computed.

the center of mass ci for each region ri is calculated and the generator
gi is moved to the position of ci. The Voronoi tessellation is then re-
calculated. The iterative process continues until the distance by which
each generator gi is moved is below an error threshold.

3.1.2 The Voronoi Treemap Algorithm
The VT visualization technique [1] uses a recursive layout algorithm
similar to that of traditional rectangle-based Treemap techniques. The
top level is fully subdivided first. This is followed by recursive sub-
divisions as the corresponding data structure is traversed. However,
in place of the normal procedural subdivision algorithm, VTs utilize a
variant of Lloyd’s algorithm to produce a CVT.

For example, consider the hierarchical data set shown in Figure 3.
The construction of the corresponding VT visualization is illustrated
in Figure 4. Beginning with the initial bounding region, a set of gen-
erators is selected such that there is one generator for each of the root
data element’s children in the data hierarchy. For example, Figure 4a
shows one red generator for each red node in Figure 3. Each generator
is assigned an initial weight which reflects the value of the generator’s
corresponding data element.

In the next stage, an iterative optimization algorithm computes a
weighted CVT (Figure 4b). The process uses Lloyd’s algorithm where
generator positions are moved to a region’s center of mass after each
iteration. This produces a Voronoi tessellation with desirable aspect
ratios. At the same time, the weight for each generator is adjusted on
each iteration so that region sizes converge to an area that reflects the
data value associated with the generator.

Once the iterative tessellation algorithm has converged to the de-
sired weighted CVT, the process recurses to subdivide child regions.
Within each region, generators are selected and assigned weights (Fig-
ure 4c). These generators are then used to produce the next level of

tessellations (Figure 4d). The process continues until the full data hi-
erarchy is reflected within the VT visualization.

3.2 Complications for Dynamic Data
The original VT technique works well for static data and has sev-
eral desirable properties. However, the layout algorithm as described
above suffers from complications when applied to dynamic data. First,
the calculation of lower level tessellations does not begin until after
higher-level tessellations are finished. Second, generator positions can
become invalid once bounding regions have been altered to reflect dy-
namic data. Both of these issues make animation problematic. Finally,
the relatively long duration of the tessellation algorithm makes the an-
imation of real-time dynamic data difficult.

As illustrated in Figure 4, the top level tessellation must be al-
lowed to fully converge before any lower-level tessellations are per-
formed. The result is that tessellations are performed serially. Unfor-
tunately, this makes animation impossible because only a fraction of
the Treemap’s layout is determined until the layout algorithm reaches
the final subdivision step. Drawing the visualization prior to this point
would result in a Treemap with missing regions.

Moreover, because the top-level Voronoi regions are altered when
data values change, lower-level generators used to compute the
Voronoi regions prior to the data change may become invalid. Their
positions, valid prior to the data change, may suddenly become lo-
cated outside of the newly updated top-level Voronoi regions once the
higher-level tessellation is performed. Choosing new generators, how-
ever, can result in wildly different layouts that prevent effective ani-
mation.

Finally, the VT layout algorithm can take a long time to converge.
Several seconds are often required for relatively simple data structures
and examples from the original paper take many minutes to complete.
This is especially problematic given that complete tessellations are not
generated during intermediate periods. As a result, animated VTs for
dynamic data are not supported. Moreover, even if interpolation could
be applied in place of intermediate tessellations, the long duration re-
quired to determine a final stable layout makes real-time animation
impossible.

4 DYNAMIC VORONOI TREEMAPS

This section describes the Dynamic Voronoi Treemap (DVT) algo-
rithm. Designed specifically to overcome the challenges outlined in
Section 3.2, DVTs are capable of visualizing dynamic data in real-
time using smoothly animated Voronoi-based Treemap layouts. This
section first describes the basic DVT algorithm. It then addresses a
number of additional design considerations.

4.1 Basic DVT Algorithm
The DVT algorithm has two distinct phases. First, there is an initial-
ization phase which is performed only once to bootstrap the visualiza-
tion regardless of how many times the data being visualized changes.
After the initialization phase, an iterative update phase is performed
continuously throughout the lifetime of the visualization to drive ani-
mated transitions when data changes.

4.1.1 DVT Initialization Phase
The initialization phase is responsible for generating the first complete
multi-level Voronoi tessellation of the visualization space when a visu-
alization is first constructed. The purpose of this phase is to bootstrap
the iterative update procedure with a valid initial state. It therefore
does not produce a CVT. Instead, the initial tessellation produced here
will be optimized during the subsequent iterative update phase.

The initialization phase is a recursive procedure as illustrated in
Figure 5. The algorithm recursively traverses the hierarchical data set
starting from the root. At each recursive step, a bounding region Bi
and a node Di in the data hierarchy are passed in as input. The process
begins with Bi equal to the overall visualization’s bounding box B and
Di set to the root of the hierarchical data set being visualized. At each
recursive step, generators are created by choosing a random point gi
within the bounding region Bi for each child of Di. The generators are

G enera tor
S e lection

B ound ing P o lygon B

D ata N ode Di

V orono i
T esse lla tionDDi

R egion
E xtraction

B

DDi

C hild
R ecurs ion

If no ch ild ren , s top recurs ion

Fig. 5. The DVT initialization phase recursively computes a complete
multi-level Voronoi tessellation. At each recursive step, random points
are selected as generators. Using these generators, a Voronoi tessel-
lation is performed. The regions produced by the tessellation are then
mapped to corresponding sub-trees of the data set to prepare for the
next round of recursion.

assigned an initial weight wi. The value for this weight is not critical
as it will be modified during the iterative update phase. However, we
initialize each Wi to its corresponding data value.

After the generators are selected, an AWP Voronoi tessellation is
computed. Note that we do not compute a centroidal tessellation at
this stage. Therefore, the iterative Lloyd’s method is not required.
Each region produced by the tessellation procedure is mapped to its
corresponding sub-tree in the data set during the region extraction step.
The algorithm is then recursively applied to these new regions and data
sub-trees until the entire hierarchy has been traversed. We store with
each node Di its corresponding Voronoi region and the generator used
to produce it.

This phase is extremely fast as no iterative optimization is per-
formed during the tessellation step. For this reason, the sizes of the
Voronoi regions produced in this phase do not yet correspond to the
initial values of the data set. In addition, the regions are likely to have
very poor aspect ratios. Optimization of these properties is accom-
plished during the iterative update phase.

4.1.2 DVT Iterative Update Phase

After the initialization phase completes, the DVT algorithm enters the
iterative update stage. During this phase of the algorithm, the multi-
level tessellation produced during initialization is iteratively improved
to optimize both region size (to better correspond to possibly changing
data values) and centroid location (to obtain desirable aspect ratios).
Most important, each iterative step produces a complete hierarchical
Voronoi tessellation that is suitable for animation.

High-Level Iterative Process. The high-level flow of the DVT it-
erative update algorithm is illustrated in Figure 6. The hierarchical
Voronoi tessellation produced during initialization is passed to an in-
cremental update module which performs a single optimization step
over all levels of the Voronoi tessellation. Described in more detail
below, this step (1) recursively evaluates and improves the aspect ratio
and size of each Voronoi region in the tessellation, and (2) produces an
overall error measure for the updated tessellation. Critically, the incre-
mental update step produces a complete multi-level Voronoi tessella-
tion for each iteration, enabling animated rendering. This overcomes
the challenge described in Section 3.2.

The iterative update process is repeated until the error measure is
reduced below a predefined threshold. Absent any changes to the un-
derlying data set being visualized, the algorithm converges to a sta-
ble centroidal Voronoi-based Treemap layout. After convergence, any
changes to underlying data values will trigger a new round of iterative
updates. Data changes can also occur prior to convergence. In this
case, the new values become active immediately during the incremen-
tal update step. For clarity, the discussion in this section is addresses
only changes to data values for existing elements already in the data

P erform D V T
In itia liza tion

P erform D V T
Increm enta l

U pdate

In itia lize

Is E rror
T oo Large?

Y

N
W ait fo r

va lue
C hange

event

S tream of da ta
va lue changes

Fig. 6. The DVT iterative update phase performs a series of incremental
layout updates that optimize both size and aspect ratio of the Voronoi
regions. Each iteration produces a complete multi-level Voronoi tessel-
lation. The process pauses when the layout error has been reduced
below a threshold, and restarts whenever data values change.

A djust generator
w e ight and

position

B ound ing P o lygon Bi

D ata N ode Di

W arp generators
to new bounds BiDDi

V alida te
weights

C hild
recurs ion

If no ch ild ren , s top recurs ion

2 1

31

4 21

T esse lla te andR egion
extraction

After recursion:
R eturn erro r + sum
of ch ild e rro r

Bi

measure error

Fig. 7. The incremental update algorithm recursively traverses a multi-
level Voronoi tessellation to measure and improve the layout. This ap-
proach is made possible by a warping stage that re-aligns old generator
positions to new bounding regions for each recursive step. The result is
a new complete hierarchical tessellation after each iteration.

hierarchy. The addition or removal of data elements themselves is dis-
cussed in Section 4.2.

Incremental Update Routine. The most critical stage of the DVT
update phase is the incremental update routine. This step recursively
traverses an existing hierarchical Voronoi tessellation, modifies gen-
erator positions and weights to improve the layout, and regenerates a
new multi-level tessellation. Most critically, we introduce a warping
step to this process to overcome the problem of invalidated generators
created by changing bounding regions.

The incremental update algorithm is illustrated in Figure 7. It is a
recursive algorithm that takes as input two pieces of data: (1) a data
element Di which is the root of a sub-tree in the hierarchical data set,
and (2) a bounding polygon Bi within which the Voronoi tessellation
for Di must be embedded. As output, the algorithm produces an im-
proved hierarchical tessellation for Di and its children together with an
overall error measure indicating the quality of the visualization layout.

The process begins by examining the generators and Voronoi re-
gions associated with each child of Di. Each of Di’s children D j has
associated with it both a generator g j and a Voronoi region r j. These
values represent the Voronoi tessellation produced during the prior it-
eration (or during initialization when this stage is called for the first
time). To improve region aspect ratio, the center of mass is determined
for each r j and the corresponding generator g j is relocated to the cen-
ter of mass. In addition, the area for each r j is computed and compared
to the area of the bounding region Bi. If the area is too small given the
data value associated with D j, the weight assigned to g j is increased.
If the area is too large, the weight is decreased. As in the original VT

Bi

Bi’
gj

Center of Mass
 for Bi’

(a) (b) (c)

gj
gj

Bi

Bi’Bi’

Center of
 Mass
 for Bi’

Fig. 8. (a) The weight and position for generator g j are adjusted using
Voronoi regions defined within the prior iteration’s bounding region B′

i
(shown in gray) and must be warped to corresponding locations within
the current iterations bounds Bi (shown in red). (b) A ray casting tech-
nique is used to determine the position of each generator based on the
B′

i region’s center of mass. (c) Generators are then translated to corre-
sponding positions within Bi.

algorithm, negative weights are allowed to ensure convergence when
optimizing for region size.

Next, a warping step—unique to the DVT technique—is performed.
As mentioned above, the adjustment of generators g j is performed
using Voronoi regions r j produced during the prior iteration (or ini-
tialization). They are therefore positioned within the prior iteration’s
bounding region B′

i. However, bounding regions can change between
iterations as the layout is optimized. This can lead to significant dif-
ferences between the B′

i and the current iteration’s bounding region Bi.
Unfortunately, changes in bounding region can invalidate generator
positions (if they fall outside of Bi) or place them far away from their
ideal positions. For example, Figure 8a shows one invalid generator
which falls outside of Bi. The other three generators remain valid, but
are positioned in less desirable locations within Bi. The warping step
is introduced to guarantee (1) that all generators remain valid even for
dramatic changes in bounding region, and (2) that generator positions
are translated to better reflect changes to bounding region.

The warping technique is illustrated in Figures 8b-c. First, we cal-
culate the center of mass for B′

i. We then cast rays from the center of
mass through each generator g j to the edge of B′

i. For each ray, we
calculate both the ray orientation and the position of the generator rel-
ative to the magnitude of the ray. To determine the new corresponding
position of each generator within Bi, we first calculate the Bi’s center
of mass. Then, using the ray orientations from B′

i and and Bi’s center
of mass, new rays are extended to the edges of Bi. Finally, genera-
tors are positioned along these rays at the relative positions calculated
using the old bounding region.

After the warping stage has completed, the weights assigned to each
generator must be validated. During warping, it is possible that a high-
weight generator gh (with weight wh) is positioned too close to a low-
weight generator gl (with weight wl). In this case, the AWP distance
(Equation 2) between the two generators gh and gl may be less than
the AWP distance between gl and itself. Mathematically, this occurs
when the following inequality is violated:

‖gh −gl‖2 > wh −wl (3)

If a violation of Equation 3 is detected, the weight wh is reduced so
that wh = ‖gh −gl‖2 +wl + ε , where ε is a very small positive value.

After weight validation, the next step is to perform a Voronoi tes-
sellation of Bi using the set off adjusted, warped, and validated gener-
ators. This produces a new tessellation for the children of Di which is
an incremental improvement from the prior iteration.

Following tessellation, we compute a layout error measure for the
newly constructed Voronoi regions. The measure is calculated by sum-
ming the error associated with each individual region. For each region,
the layout error is defined as a linear combination of size error and as-
pect ratio error. Size error measures how closely the size of a Voronoi
region reflects the data value it represents, with a value of zero rep-
resenting a region that is exactly the right size. Aspect ratio error is
measured using the distance between a generator and the center of

mass of its corresponding Voronoi region. A region where the genera-
tor is located exactly at the center of mass has an aspect ratio value of
zero.

Next, the region extraction step maps each new Voronoi region and
its associated generator to the corresponding sub-tree in the data set.
The algorithm then recurses to each of the children of Di using the new
Voronoi regions as bounding regions for the recursive tessellations.

Finally, the algorithm concludes by returning a sum of the layout
error returned by each of the recursive calls added to its own mea-
surement of layout error. The total overall layout error after the entire
recursive process returns is used to determine if additional iterations
are required to further improve the tessellation.

4.2 Additional Considerations
The basic DVT algorithm described above enables animated Voronoi-
based Treemaps for data sets with changing values. In this section, we
discuss several additional aspects of the DVT technique.

4.2.1 Removal and Insertion
The core DVT algorithm describes how to visualize data elements with
changing values. However, there may also be data elements that are
completely removed or added to the data set over time.

Animating the removal of a region from a DVT is straight forward.
By setting the value of a data element to zero, the default algorithm
will iteratively reduce the area assigned to the corresponding Voronoi
region until it reaches zero and disappears. This produces an animated
disappearance of a zero-valued region. Once the region has disap-
peared, the corresponding data element can be safely removed from
the data structure.

Animating the insertion of a new data element is more complex.
When a new data element is added to the data structure, it must be
assigned an initial generator. This is required to allow the iterative
update phase to proceed correctly.

The selection of generator position can follow one of two ap-
proaches: (1) randomized vertex selection, and (2) anchored vertex
selection. Randomized vertex selection uses a random vertex from
any peer Voronoi region in the data set as the generator’s initial posi-
tion. This technique produces a random insertion pattern where new
nodes are spread out spatially. As a result, the DVT converges fairly
quickly to a new layout even when several data elements are added at
once. However, the spatial distribution of new regions makes it harder
for users to recognize when new data elements appear.

Anchored vertex selection uses the same vertex for the insertion of
all new nodes added to the same tier of the hierarchical data set. This
approach has the benefit that all new regions first appear at the same
place, producing a clear “flow” of new nodes into the visualization.
However, because all new regions are inserted at the same location,
they have further to travel before reaching a low-error layout. As a
result, it takes longer to converge than the randomized approach.

Choosing the best approach for inserting new nodes is application
dependent. In our use case described in Section 5, we employed an-
chored vertex selection because of the relatively slow pace of insert-
ing new nodes and the importance of conveying the appearance of new
nodes to the user.

After a generator position has been determined, a weight must be
assigned. We calculate an initial weight using Equation 3, the same
equation used for weight validation. We compare the new generator’s
position with it’s peers and compute the lowest possible weight such
that Equation 3 is satisfied. This initial weight is increased during the
iterative update phase until the corresponding Voronoi region reaches
the desired size.

4.2.2 Animation Throttling
The speed at which Voronoi regions move during animation can be
highly variable. This is an artifact of the optimization algorithm which
uses a greedy metric to improve the shape and size of each region in-
dependently. As a result, regions often “push” against each other for
screen space. In some cases the movement of regions can become very
slow as the optimization approaches a local equilibrium, then speed

up quickly as the system “squeezes” past stable point on its way to
the final optimized layout. This behavior is analogous to the geologi-
cal concept of two tectonic plates rubbing against each other until the
energy is so great that there is an earthquake.

These squeeze events are apparent during animation a DVT as sud-
denly fast movements which can distract from a user’s ability to follow
the motion of a region. To limit the visual impact of such events, we
restrict the distance by which the centroid of any region can move in
a single time step to a maximum threshold. This approach throttles
the top speed at which a region can move during animation, making it
easier for users to follow.

4.2.3 Landmarking

In the basic DVT algorithm, Voronoi regions can move freely around
their corresponding bounding region during animation. As a result, a
region that starts on the left side of the visualization can migrate over
time to the right side of the display. However, there are times where it
may be more desirable to keep an important region located at the same
place within the visualization.

This can be accomplished by landmarking. This technique fixes the
position of a landmarked region’s generator to a static location within
its bounding region. As a result, the landmarked region does not move
during animation. Landmarking can be used to fix the location of one
region or multiple regions. However, the use of too many landmarks
can restrict layout flexibility and result in sub-optimal tessellations that
take a longer time to converge.

4.2.4 Highlighting

Animation is a useful technique for visualizing the dynamic nature of
a data set. However, our observations have shown that it can be diffi-
cult at times difficult to distinguish between regions undergoing small
value changes and regions that are simply changing spatial positions
with maintaining the same value. Highlighting can be used to mark re-
gions with changing values to help users overcome this challenge. Our
prototype implementation employs an optional time-decaying high-
light around the border of any region that undergoes a change in value.
The highlight appears with full intensity when a value change first oc-
curs and fades over time.

5 USE CASE: HIGH-PERFORMANCE COMPUTING SYSTEM
ADMINISTRATION

Our work on developing a new Treemap algorithm for dynamic data
is motivated by the real-world needs of system administrators who
are tasked with managing a massively parallel high-performance com-
puting system under development in our lab. The DVT algorithm is
designed to give these administrative users a real-time overview of the
machine’s complex resource allocation behavior.

The parallel nature of the computer system means that a large num-
ber of jobs can run concurrently. Moreover, each job uses a time-
varying portion of the system resources which is managed by an au-
tomated job scheduler. When jobs are submitted to the system, they
are assigned to one of several weighted queues. The queue weights
are then used by the job scheduler to dispatch new work as system re-
sources become available. It is extremely difficult for administrators
to understand and tune the behavior of the computer system due to its
large scale, the complexity of the job scheduling algorithm, and the
temporally dynamic system requirements of each job.

To assist these users, we have developed a web-based system ad-
ministration application which provides access to both raw system sta-
tus data and visualization-based tools. A key part of this application
is a DVT-based visualization panel which shows a real-time animation
of the system’s job activity. The visualization is deployed as a Java
applet and uses a DVT implementation built around an open-source
implementation of the Bowyer-Watson [4, 16]. Voronoi tessellation
algorithm.

The DVT tool is used to convey resource allocation to jobs. The tool
provides flat views of jobs as shown in Figure 9, or hierarchical views
similar to Figure 1 showing jobs organized by scheduling queue. The

Fig. 9. A screen capture of our system administration application show-
ing the DVT algorithm in use to view resource distribution across jobs.
In the view shown here, the user is examining jobs independently (not
hierarchically) with live resource allocation estimates updated every 5
seconds. The view shows 15 concurrent jobs with relatively even re-
source allocations. Users can click on individual regions to access de-
tailed information about each job. Other views, similar in appearance to
Figure 1, allow jobs to be grouped hierarchically based on job attributes.

DVT algorithm is required because of the dynamic nature of the sys-
tem’s jobs. New jobs appear as they are first scheduled; jobs disappear
as they complete; and jobs use different amounts of system resources
over time. The DVT algorithm is ideally suited for visualizing this sort
of dynamic data.

The animated displays made possible by the DVT technique pro-
vide administrators with several key insights. They can observe how
stable the job scheduler is at maintaining fairness between the various
queues. If problems are seen, parameters can be adjusted to improve
performance. Administrators can also use the DVT visualization to
follow the lifetime of a single job. This can help identify problem jobs
that may be running too long or obtaining too many system resources.
The visualization also helps administrators understand how resources
are re-allocated when a job terminates. Finally, the DVT algorithm
helps administrators understand how failures impact overall system
utilization to help maintain high availability.

These are just a few of the benefits that the DVT visualization pro-
vides to system administrators. By enabling a stable, real-time, ani-
mated display of system resource allocation, the DVT-based portion of
our system administration application affords users a unique window
into the dynamic nature of the computer system. As our evaluation in
Section 6 shows, the unique properties of the DVT technique are rated
very highly by users performing the visual tasks required to gain the
insights outlined above.

6 EVALUATION

This section presents a brief evaluation of the DVT technique. We first
provide some statistics regarding the DVT’s convergence behavior for
data sets similar to those found in the use case described in Section
5. We then present results from a user study comparing DVT-based
visualizations to animated Squarified Treemaps (STs).

6.1 Iterations and Convergence

To study the performance of the DVT algorithm, we gathered statistics
for several test data sets patterned after the system administrator use
case. Each test used a two-level tree of data with five top level nodes

Test Case Level 1 Iterations Total Iterations
Test 1 11 84
Test 2 10 97
Test 3 15 29
Test 4 46 93
Test 5 11 49
Test 6 10 50
Test 7 11 30
Test 8 12 30
Test 9 16 51

Test 10 11 27
Averages 15.3 54

Fig. 10. Convergence statistics for the DVT layout algorithm. In our
evaluation, an average of 15.3 iterations were required for the top level
Voronoi tessellation to converge. Overall convergence required an av-
erage of 54 iterations.

and a total of 30 children. We then used an instrumented version of
our DVT application to visualize the data.

We performed 10 independent experiments, each with randomly se-
lected initial configurations and data values. For each experiment, we
started with a fully converged DVT visualization. We then counted the
number of iterations required to re-converge after data value changes
were introduced that ranged from 1% to 2% of the total data set value
(a typical amount for our use case application). When faced with this
level of change, the DVT algorithm converged quickly to a new stable
configuration. We The observed statistics are shown in Table 10.

On average, the layout algorithm required 54 iterations (ranging
from 27-97) to converge with a rather small error tolerance (e = 0.01).
The results show that the top level Voronoi regions converge far more
quickly than the overall visualization. This behavior is expected given
the nested nature of the Treemap. When top level Voronoi regions
are still converging, the lower level tessellations are forced to adapt to
changing bounding regions via the warping step. Only after the top
level regions stabilize can lower level generators can be adjusted more
accurately.

Also as expected, reducing the error threshold increases the itera-
tion count. However, for the relatively small data sets in our use case
application, convergence remains quick. Moreover, our informal prob-
ing of the error tolerance space showed that while layouts did improve
statistically with lower error thresholds, the difference was not clearly
perceivable to human users.

6.2 User Feedback
We performed a user study with 10 participants to compare DVTs with
animated STs. We chose the ST visualization technique as a baseline
in our study because of its similarly desirable aspect ratios and be-
cause the original VT algorithm does not support animation. In our
study, each participant was shown both a DVT visualization and a ST
visualization of the same dynamic hierarchical data set. Both visual-
izations used color and size to encode the same data properties.

The dynamic data used in the study was a two-level hierarchy with
five top level nodes and 25 lower level nodes. Each top level node
had five children of various sizes. During the experiment, the value
assigned to a single data element was continuously increased from ap-
proximately 5% of the data set total value to approximately 50% of the
total value. All other data elements were left with a static value. The
transition from 5% to 50% took place over approximately 30 seconds.

For each visualization type, users were asked to perform two differ-
ent visual tasks. First, users were asked to observe the overall data set
and describe the changes that were taking place. This was the global
clarity task. As part of that task, users were asked to rate the visual-
ization on a scale of one to five on how well it helped them understand
the changes taking place.

The second task asked users to follow a single region (not the one
growing in size) throughout the animated time period and comment

1

2

3

4

5
U

se
r R

at
in

g
(o

n
sc

al
e

of
 1

-5
)

ST 1.253.2
DVT 5.453.4

gnikcarT lacoLytiralC labolG

Fig. 11. Results from our user study show a statistically significant pref-
erence for DVT versus ST. Users rated DVT higher for both the Global
Clarity and Local Tracking tasks.

on what changes were taking place to that specific value. This was the
local tracking task. Once again, users were asked to rate the visualiza-
tion on a scale of one to five on how well it helped them perform the
task.

The results from our study are shown in Figure 11. In both tasks,
the DVT visualization was rated significantly higher than the ST-based
tool. In the global clarity task, the DVT tool scored an average of
4.35 compared to 2.35 for the ST visualization.1 The higher rating
for DVT is statistically significant with p < 0.01 using a one tailed
paired t-test. Users responded that the sharp changes in layout in the
ST visualization, caused by the changing data value, made it much
harder to pick out the trend until late in the animation when the layout
seemed to stabilize. In contrast, the DVT offered a smoothly animated
view throughout the sequence.

The DVT visualization performed even more strongly in the local
tracking task. DVT was given a 4.5 rating while ST scored 2.1. This
statistically significant preference for the DVT technique (p < 0.01,
one tailed paired t-test) reflects that following a single region using
a Treemap technique like ST that lacks stability is nearly impossible.
Each time a jump occurred in the layout, users had to perform a global
search to re-located the region of interest. In contrast, the DVT vi-
sualization allowed users to follow the region easily throughout the
duration of the animation.

7 CONCLUSION AND FUTURE WORK

Treemaps are a powerful visualization technique for conveying the
structure of hierarchical data structures. However, due to limitations
associated with many layout algorithms, Treemaps are most often used
to display static data sets. Specifically, Treemap layout algorithms
typically sacrifice stability to support desirable aspect ratios (or vice
versa). As a result, most techniques suffer from one of two problems:
either (1) elongated high-aspect ratio regions, or (2) instability that cre-
ates large discreet jumps in region position when rendering dynamic
data.

In this paper, we introduced Dynamic Voronoi Treemaps, or DVTs.
Unlike prior work, DVTs provide both desirable aspect ratios and sta-
ble layouts that enable smoothly animated visualizations of dynamic
data. We described our novel algorithm and discussed how the intro-
duction of a warping step allowed our approach to produce a complete

1While users were asked to respond with integer ratings from 1-5, some
participants provided fractional scores, such as 2.5. This led to averages that
would not be possible had users restricted themselves to integer values.

multi-level Voronoi tessellation for each iterative improvement to the
layout. Moreover, we described how the DVT algorithm overcomes
key limitations of the original Voronoi Treemap technique.

After presenting the technical details of our approach, we described
a use case where DVTs have be used in a practical application. Moti-
vated by that use case, we conducted a user study showing that DVTs
were more effective at two different spatial tasks than animated squar-
ified Treemaps. Our results provide statistically significant evidence
that DVTs are preferred by users in both global clarity and local track-
ing tasks.

While our initial results are promising, there remain several areas
for future study. For example, more effective alternatives to anima-
tion throttling would be very valuable. While throttling limits the top
speed at which animation can occur, it doesn’t smooth out less severe
speed variations. A more effective approach to controlling variations
in animation speed would be useful.

Another topic for future study is the perceptual impact of changes in
error tolerance. Higher error thresholds produce animations that con-
verge faster and produce less region movement. However, the resulting
Voronoi regions are sized less accurately. While large discrepancies in
size are problematic, moderate errors may be acceptable given users’
difficulty in accurately judging the area of arbitrary polygons. Explor-
ing this trade-off via user studies to determine the ideal error threshold
is an important task.

REFERENCES

[1] M. Balzer and O. Deussen. Voronoi treemaps. In IEEE InfoVis, page 7,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the visu-
alization of software structures. In Proc of ACM Symposium on Software
Visualization, 2005.

[3] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2d space to display hierarchies.
ACM Transactions on graphics, 21(4):833–854, 2002.

[4] A. Bowyer. Computing dirichlet tessellations. The Computer Journal,
24(2):162–166, 1981.

[5] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In Proc.
of Eurographics/IEEE TCVG Symposium on Visualization, pages 33–42,
2000.

[6] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations:
Applications and algorithms. SIAM Review, 41(4):637–676, 1999.

[7] Q. Du and X. Wang. Centroidal voronoi tessellation ased algorithms for
vector fields visualization and segmentation. In Proc. of IEEE Visauliza-
tion, 2004.

[8] J.-D. Fekete and C. Plaisant. Interactive information visualization of a
million items. In Proc. of IEEE InfoVis, 2002.

[9] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proc of IEEE
Visualizatoin, 1991.

[10] S. P. Lloyd. Least square quantization in PCM. In IEEE Transactions on
Information Theory, volume 28, pages 129–137, 1982.

[11] D. Roussinov and H. Chen. A scalable self-organizing map algorithm for
textual classification: A neural network approach to thesaurus generation.
Communication and Cognition in Artificial Intelligence, 15(1-2):81–111,
1998.

[12] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Transcations on Graphics, 11:92–99, 1992.

[13] B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In Proc
of IEEE InfoVis, 2001.

[14] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using
treemaps. IEEE Transactions on Visualization and Computer Graphics,
13(6):1286–1293, 2007.

[15] J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visualization
of hierarchical information. In Proc. ofIEEE InfoVis, 1999.

[16] D. F. Watson. Computing the n-dimensional tessellation with application
to voronoi polytopes. The Computer Journal, 24(2):167–172, 1981.

[17] M. Wattenberg. Visualizing the stock market. In Proc. of ACM CHI
Extended Abstracts, 1999.

[18] M. Wattenberg and B. Bederson. Dynamic treemap lay-
out comparison. http://www.cs.umd.edu/hcil/treemap-
history/java algorithms/LayoutApplet.html.

