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Abstract—Documents in the health domain are often annotated
with semantic concepts (i.e., terms) from controlled vocabularies.
As the volume of these documents gets large, the annotation
work is increasingly done by algorithms. Compared to humans,
automatic indexing algorithms are imperfect and may assign
wrong terms to documents, which affect subsequent search tasks
where queries contain these terms. In this work, we aim to
understand the performance impact of using imperfectly assigned
terms in Boolean semantic searches. We used MeSH terms and
biomedical literature search as a case study. We implemented
multiple automatic indexing algorithms on real-world Boolean
queries that consist of MeSH terms, and found that (1) proba-
bilistic logic can handle inaccurately assigned terms better than
traditional Boolean logic, (2) query-level performance is mostly
limited by lowest-performing terms in a query, and (3) mixing
a small amount of human indexing with automatic indexing can
regain excellent query-level performance. These findings provide
important implications for future work on automatic indexing.

Index Terms—Automatic Indexing, Semantic Search, Medical
Subject Heading, Machine Learning

I. INTRODUCTION

Controlled vocabulary is widely used in search engines
to index unstructured content with semantic concepts. For
instance, Medical Subject Headings (MeSH) are developed
by the National Library of Medicine (NLM) for indexing
and searching biomedical information in the PubMed search
engine. Other medical search engines such as SemEHR [29]
and Thalia [24] assign terms in the Unified Medical Language
System (UMLS) to documents and use these terms as search
facets. The radiology image search engine GoldMiner [9]
assigns terms in SNOMED-CT and MeSH to image documents
to facilitate image search.

The rapid growth of biomedical information and clinical
texts makes it infeasible to manually assign controlled vo-
cabulary terms to each document. In 2022, more than 1.3
million articles were added to the PubMed index [15]. In
the same year, NLM announced that all PubMed articles have
been indexed by automatic methods named the Medical Text
Indexer (MTI) [21], with only a small subset reviewed and
curated by human experts [2].

However, the accuracy of state-of-the-art automated index-
ing methods still cannot match that of human indexing [16]. In
BioASQ 2022, a competition that focused on MeSH indexing,
the best system achieved a micro-F1 score below 0.75 [17], on
par with or better than NLM’s system in the same competition.
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Fig. 1: A Venn diagram that illustrates the ground-truth article
sets for two terms A,B and the corresponding machine-
classified article sets A′, B′. The term-level classifiers are both
inaccurate (A 6= A′, B 6= B′). The query-level performance is
good if the query is A AND B (A∩B ≈ A′ ∩B′) but poor if
the query is A OR B (A ∪B 6= A′ ∪B′).

Indeed, NLM is aware that automatic indexing have potential
errors [2]. Wrongly indexed articles may result in unsatis-
factory search results. For example, in systematic literature
reviews, researchers compose Boolean queries to precisely
define the inclusion and exclusion criteria in a search query,
and these queries usually contain MeSH terms to specify topics
of interest. Automatic indexing algorithms may make mistakes
in assigning MeSH terms to articles, causing relevant articles
missed and non-relevant articles included in search results.

Given the inevitable trend of adopting automatic indexers
in semantic search engines, we are interested in answering the
following question: how will inaccurate automatic index-
ing results influence semantic search performance, where
queries are Boolean combinations of index terms? For
search engine developers, it is important to systematically
measure the influence of adopting automatic indexing tech-
niques on search quality before deploying them in production.
For search engine users, they generally expect terms to be
precisely assigned to documents. As semantic search engines
automate the indexing process, they should be informed to
what extent this expectation still holds true.

Answers to the above question may not be straightforward.
To illustrate, consider the example in Figure 1. Here, the two
term-level classifiers (automatic indexers) do not perform well
individually. However, when used in a conjunctive Boolean
query, the resulting article set matches the ground-truth set
very well. Meanwhile, the resulting article set of a disjunctive
query severely mismatches the ground truth. This example
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shows that inaccurate term-level indexers may or may not give
poor query-level results. The influence depends not only on the
accuracy of term-level classifiers, but also on how the terms
are logically combined in queries.

In this work, we take a data-driven approach to investigating
the effects of automatic indexing on semantic search quality.
Specifically, we study the case of MeSH indexing and biomed-
ical literature search. Using a set of real-world search queries
consisting of MeSH terms, we compared the search results us-
ing automatically assigned MeSH terms against search results
using manually assigned MeSH terms. We considered two au-
tomatic indexing approaches: assigning MeSH terms as binary
labels (presence or absence) or probabilistic labels (each term
is associated with a predicted probability). Correspondingly,
search queries are implemented as either Boolean logic or
probabilistic logic. Our analyses on the impact of inaccurate
indexing on search results reveal the following major findings:
• Assigning terms as probabilistic labels delivers better

search performance than assigning terms as binary labels.
Keeping the predicted probability of each term makes it
possible to incorporate term-level uncertainty information
in subsequent search and ranking processes.

• Query-level search performance does not linearly depend
on term-level classification performance. Rather, we see
a ‘bucket effect’: query-level performance is limited by
the worse-performing terms in the query, which are often
rare terms in the corpus.

• Excellent query-level performance (> 95% F1) can be
achieved by dividing the indexing work between humans
and machines: to apply automatic indexing only on terms
that are relatively easy for machines to predict (> 80%
F1), and use manual indexing on remaining (rare) terms
that are challenging for machines to predict.

Our work reveals several implications for future research
on automatic indexing. It shows that index terms with lowest
predictive performance are the bottlenecks of semantic search
performance. It is therefore crucial for automatic indexing
research to specifically focus on optimizing rare terms. At the
same time, investing human reviewing efforts on these terms
may yield a high return in search performance gain.

II. RELATED WORK

To the best of our knowledge, the relationship between
term-level indexing performance and query-level search per-
formance has not been well-studied. Prior works often evaluate
automatic indexing techniques at the term or concept level by
treating the indexing problem as a multi-label classification
or information extraction problem [8, 19] . Few works have
evaluated automatic indexing systems in the context of search
tasks. An early work by Kim et al. [11] studied the impact of
automatically assigned MeSH terms on search results against
manually assigned MeSH terms. They measured the impact
using a set of non-Boolean queries. However, Boolean queries
are where MeSH terms are often used in practice [13].

Specific efforts have been put into extracting biomedical
concepts from literature, often referred as semantic tagging or

semantic indexing. In a dedicated competition, BioASQ Task
A [26], various methods have been proposed to index biomedi-
cal publications with MeSH terms automatically [32, 31]. This
line of work usually evaluates semantic indexing systems as
solving an extreme multi-label classification problem.

The problem of automatic MeSH indexing is broadly related
to information extraction, an active research area that focuses
on extracting valuable information from unstructured data.
Information extraction services are appealing to biomedical
knowledge management systems in that they can produce
structured, unambiguous data from unstructured text, thus
enabling more effective and efficient search [7]. Therefore,
it has been well-studied and applied to systems in various
applications such as EHR systems [29], image retrieval [8],
and biomedical literature search [25]. Traditionally, machine-
extracted terms are not directly exposed to users but rather
internally used by search engines to understand search queries
and improve search quality [23]. Recent systems such as
PubMed start to allow end-users to directly express their search
and filter criteria through machine-assigned index terms [2].

III. METHODS

A. Problem Formulation

Document indexing. Let the set of all MeSH terms be H =
{h1, · · · , hn}. The indexing process assigns terms from H to a
document d. The ground-truth/manual term assignment vector
for d is s = (s1, · · · , sn). si = 1 indicates that hi was assigned
to d, and si = 0 indicates otherwise.

Automatic indexing algorithms (multi-label classifiers or
index term rankers) assign terms to d as either binary labels
or probabilistic labels. A binary indexing algorithm assigns
a binary vector b = (b1, · · · , bn) to d. bi ∈ {0, 1} indicates
whether the algorithm predicts that hi belongs to d or not.
A probability indexing algorithm assigns a probability vector
p = (p1, · · · , pn) to d. pi ∈ [0, 1] indicates the predicted
probability that hi belongs to d.

Boolean query using index terms. A Boolean query q is a
combination of MeSH terms to express a relevance criterion.
The Boolean combination is a function fq(s) that takes the
term assignment vector s and outputs a binary relevance value.
If d’s ground-truth term assignment vector is s, then fq(s) ∈
{0, 1} is the ground-truth for whether d is relevant to q. Table
I shows an example of a search topic and the corresponding
formulation.

When manual indexing is replaced by automatic indexing,
we can estimate the relevance of d to a query q based on
the terms automatically assigned to d. For a binary indexing
algorithm that gives a binary vector b, fq(b) ∈ {0, 1} is the
estimated binary relevance for whether d is relevant to q. For a
probability indexing algorithm that gives a probability vector
p, we can use the probabilistic version of the Boolean function
to estimate the probability that d is relevant to q. We call this
probabilistic logic function f ′q . In this paper, we implement
the probabilistic logic using product t-norm [5]. The last row
of Table I shows such an example.



TABLE I: An example that illustrates a search topic represented as a Boolean logic or probabilistic logic over MeSH terms.
‘⊕’ is the logical OR and ‘�’ is the logical AND.

Search topic “COVID-19 transmission”

Boolean search query q = (“COVID-19” OR “SARS-CoV-2” OR “Coronavirus”) AND “Disease Transmission, Infectious”

MeSH terms in q
h1 = “COVID-19” (D000086382), h2 = “SARS-CoV-2” (D000086402),
h3 = “Coronavirus” (D017934), h4 = “Disease Transmission, Infectious” (D018562)

Boolean logic function fq fq(b) = (b1 ⊕ b2 ⊕ b3) � b4

Probabilistic logic function f ′q f ′q(p) = [(p1 + p2 − p1 · p2) + p3 − (p1 + p2 − p1 · p2) · p3] · p4

B. Indexing Algorithms

We implemented automatic indexing as a multi-label clas-
sification task, where the document content (title and abstract)
is the input and a set of associated MeSH terms is the
output. We trained two types of MeSH term classifiers: logistic
regression (LR) and Bidirectional Encoder Representations
from Transformers (BERT). The simpler LR classifiers used
bag-of-words features with TF-IDF weights. We trained one
binary LR classifier for each MeSH terms. The more complex
BERT classifier was obtained by fine-tuning BioBERT [12]
with as many sigmoid units as the number of MeSH terms.
Both classifiers produce a vector of predicted probabilities for
each term. We obtain a vector of binary values for each term
by thresholding the predicted probabilities at 0.5.

The two classifiers give us four algorithms for query-
level document search. If their outputs are probabilities for
each term (before thresholding), we use probabilistic logic
to combine these probabilities to obtain a query-level rele-
vance score in [0, 1]. We call the two algorithms ProbLR and
ProbBERT. If their outputs are binary values for each term
(after thresholding), we use Boolean logic to combine these
binary values to obtain a query-level binary relevance score in
{0, 1}. We call the two algorithms BinaryLR and BinaryBERT.

As a comparison, we also trained classification models that
take a document d as input and directly predict the query-level
ground-truth label fq(s) without predicting the term-level label
vector s. In this method, the model can be optimized in an end-
to-end fashion to directly improve the query-level performance
and therefore may outperform the above pipeline models [27].
Therefore, we include this method as a comparison. For each
query, we train both LR and BERT models to predict the
probability of a document being relevant to a query. We call
these algorithms QueryLR and QueryBERT.

ProbLR, ProbBERT, QueryLR, and QueryBERT output con-
tinuous scores in [0, 1]. Therefore they can either classify or
rank documents for a given query. BinaryLR and BinaryBERT
output binary values and can only generate classifications but
not rankings of documents for a given query.

We did not use NLM’s MTI algorithm or other algorithms
from BioASQ competitions because our primary goal is to
study the effect of using imperfectly assigned terms in Boolean
semantic search. Those algorithms are not qualitatively differ-
ent from models we trained in our study in terms of their
imperfect indexing performance. So instead we trained our

own models to facilitate experimentation and comparison.

C. Dataset Construction

Document indexing corpus. We trained and evaluated the
above LR and BERT models using a large and representative
set of biomedical literature with MeSH term annotations
from BioASQ 2021 Task A [18]. It contains 15,559,157
PubMed articles with titles, abstracts, and expert-annotated
MeSH terms, among other metadata. The corpus covers 29,369
unique MeSH terms. Each article contains 12.68 MeSH terms
on average.

Boolean query set. To evaluate the influence of automatic
indexing on search result quality, we used a set of Boolean
queries constructed for systematic literature reviews. The
queries are from three sources: (1) CLEF-TAR 2019 [10], (2)
Systematic Review Update Dataset [1], (3) PubMed COVID-
19 article filters [22]. Since the goal here is to obtain Boolean
queries consisting of MeSH terms, not to perform the same
systematic review tasks per se, we processed the queries
as follows. First, we eliminated any non-MeSH terms in
these queries so that each query is a logical composition of
MeSH terms only. Second, if a term is preceded by the exp
(explosion) operator, we only included the term itself without
expanding it to its hyponyms in the MeSH hierarchy. This is
because such expansion only refines the scope of a term, not
the semantic complexity of the query. Finally, we eliminated
queries with less than 50 relevant documents in the entire
corpus such that reasonably good machine learning models
can be trained. The final query set includes 27 queries that
contain 183 distinct MeSH terms. Each query combines a
set of MeSH terms by logic operators (AND, OR, NOT). All
queries and references to their origins can be found in the
online appendix.1

D. Implementation Details

We split the dataset into training set (89%; 13,847,650
articles), validation set (9%; 1,400,324 articles), and test set
(10%; 1,555,915 articles). We randomly sampled a training
subset with 500K documents from the training set. Regardless
of which indexing approach is followed, imbalanced class
distribution is a problem that the classifier training process
must deal with. This is because only a small minority of the
overall document corpus matches any given MeSH term or

1https://bit.ly/3mKmKIp

https://bit.ly/3mKmKIp
https://bit.ly/3mKmKIp


query. This imbalanced class distribution generally presents a
challenge for machine learning algorithms. To mitigate this
challenge, we up-sampled for rare MeSH terms and sparse
queries by adding extra documents that are assigned with rare
terms or are relevant to sparse queries to the training subset.
We constructed such a training subset with 514,686 articles
for the experiments. For a fair comparison, all classifiers were
trained using the same set of articles. We found that using
a larger training subset is not improving the MeSH terms
predictors significantly.

Note that in this subset the positive examples of any class
are still the minority. When training a machine learning classi-
fier on a dataset with an imbalanced distribution of positive vs.
negative examples, the classifier tends to be biased towards the
majority (negative) class and reluctant to predict the minority
(positive) class. To mitigate this problem, we used special loss
functions such as the cost-sensitive loss [6] and the focal loss
[14] to counter the effects of data imbalance. See Appendix
for detailed data sampling procedure A, hyperparameter set-
tings B, and term-level classification performance (C).

E. Query-level Evaluation Metrics

Predicting the relevance of an article with respect to a
query can be viewed both as a classification task (a binary
notion of relevance) and a ranking task (a relative notion of
relevance). To evaluate classification performance, we used
precision, recall, and F1-score averaged over all 27 queries. To
evaluate ranking performance, we used mean average precision
(MAP), precision@10 (P@10), precision@50 (P@50), and
recall@1000 (R@1000) averaged over all 27 queries. For
the Prob and Query approaches, we converted continuous
relevance scores into binary classification decisions by finding
the threshold that maximizes the F1-score on the validation set,
an approach proposed by You et al [32]. We do not evaluate
the ranking performance of the Binary approaches as they
only generate binary relevance labels.

IV. RESULTS AND ANALYSES

In this section, we conduct in-depth analyses of the per-
formance of various automatic indexing and ranking algo-
rithms described in Section III-B. Besides comparing different
algorithms, we also observe a large performance variation
across queries (IV-A). This motivates us to further analyze
the correlation between term-level performance and query-
level performance (IV-B), and look into concrete cases (IV-C).
Finally, we analyze a mixed indexing scenario where algo-
rithms only assign terms that can be accurately predicted and
humans assign terms that are challenging for algorithms to
predict (IV-D).

A. Quantitative Performance Evaluation

We report query-level performance of the two semantic
indexing methods (BinaryLR/BERT; ProbLR/BERT) and the com-
parison method (QueryLR/BERT) in Table II. To facilitate com-
parison between methods that used the same base classifiers,
we put LR results and BERT results as adjacent rows. All

metrics are averaged over 27 queries. We compared the metrics
against each other using two-sided randomization test [3] with
Type-I error level at α = 0.05. We seek to understand how
much the search performance drops when using automatic
indexing methods. We also seek to compare the performance
difference across different indexing methods, different base
models, and when evaluating on different search queries.

Since we treat the set of documents retrieved using manual
indexing as the ground truth, the precision, recall, and F1 score
of manual indexing should all be 1.0. Overall, none of the
experimented indexing methods perform closely to manual
indexing. The best F1 score is achieved by ProbBERT, with
the best precision and a decent recall. BinaryLR achieves
the highest recall (although not significantly better than other
recall results) at the cost of a low precision. ProbBERT gives the
best ranking performance in all four metrics (although none
of the metrics are significantly higher than those of ProbLR).

Comparing Binary and Prob methods, Prob methods per-
form at least as well as Binary methods in most of the
metrics except for recall when using LR as the base classifier.
Prob methods show its advantage in precision when using
BERT as the base classifier. Treating F1 as the measure for
overall model performance, Prob performs similarly to Binary
when using LR and significantly better than Binary when
using BERT. Prob methods have the additional advantage of
generating document rankings, making them more favorable
than Binary methods for automatic indexing.

Comparing LR and BERT, there are no significant differ-
ences between BinaryLR and BinaryBERT. When implemented
as Prob indexers, ProbBERT gives significantly better query-
level precision and F1. The recall and ranking metrics are
similar between ProbBERT and ProbLR.

The term-level indexing methods (BinaryLR/BERT;
ProbLR/BERT) perform significantly better than query-
level classifiers (QueryLR/BERT) in most of the metrics. This
means when the decision logic is pre-specified, end-to-end
training is not necessarily better than component-wise
training. Therefore, term-level indexing is a good strategy for
semantic search not only for its scalability and transparency
but also for its performance.

(a) ProbBERT (b) BinaryBERT

Fig. 2: F1 score distribution in two methods.

Looking at the performance distribution in Figure 2, the
drop in performance varies among queries. Some queries are
less influenced by automatic indexing and reach an F1 of



TABLE II: Query-level average performance of automatic indexing and ranking algorithms. All metrics are the higher the
better. Algorithms using the same base classifier (LR or BERT) are grouped into adjacent rows. Within either group of rows
in the same column: results labeled with ‘∗’ are significantly better than results without ‘∗’; if two results are labeled with ‘∗’,
they are not significantly different. Across all rows in the same column: if a result is shown in boldface, it is significantly better
than any other results in that column; otherwise all results labeled with ‘∗’ in that column do not have significant difference.
(Randomization test, significance level α = 0.05)

Method P R F1 MAP P@10 P@50 R@1000

BinaryLR 0.310* 0.625* 0.390* - - - -
ProbLR 0.325* 0.584 0.395* 0.415* 0.600* 0.459* 0.791*
QueryLR 0.241 0.543 0.305 0.314 0.507 0.401 0.745

BinaryBERT 0.358 0.553* 0.391 - - - -
ProbBERT 0.427* 0.554* 0.457* 0.452* 0.611 0.481 0.810*
QueryBERT 0.389 0.434 0.389 0.397 0.530 0.471 0.711

0.9016. Some queries have a big drop in performance and the
F1 is 0.0 when using automatic indexing. This motivates the
analysis of term-level factors that influence query performance
and the case studies below.

B. Correlation Between Term-Level Performance and Query-
Level Performance

As observed in the query performance distribution in Figure
2, the impact of automatic indexing on queries varies. There
are two possible sources of difference. First, term-level per-
formances of the MeSH terms used in the queries are differ-
ent, which result in differences in query-level performance.
Second, the queries have different semantic structures and
complexity (e.g. they use a different number of MeSH terms,
and the MeSH terms are combined in different ways). To
understand what factors result in the difference, we analyzed
the correlation between the search result quality on a query
and (1) aggregated term-level performance of MeSH terms
used in the query and 2) query characteristics describing its
complexity. We used ProbBERT in our analysis as it gives the
overall best performance among all methods considered.

1) Correlation between term-level performance and query-
level performance: We used F1 metric to represent the per-
formance of a MeSH term indexer. We calculated the Pearson
correlation between the classification performance on a query
and the aggregated performance of MeSH terms used in that
query (i.e. worst/average/best term-level F1, frequency of the
most frequent MeSH term, frequency of the least frequent
MeSH term, and number of MeSH terms in that query). The
results are shown in Table III.

For the correlation between query performance and MeSH
term performance, the recall on a query is significantly higher
if the worst F1 among all the MeSH terms is high. Besides, the
recall and precision on a query are higher if the average F1 of
all the MeSH terms is higher (moderately significant). There is
no significant correlation between the best F1 among all the
MeSH terms with the precision and recall on a query. This
indicates that the recall on a query is restricted by the worst-
performing MeSH term indexers of MeSH terms in the query.
To improve query retrieval performance, we should focus
on the lowest-performing MeSH terms and average MeSH

term performance. Having one well-performing MeSH term
in a query is not enough to give a good query-level search
performance.

For the correlation between query performance and MeSH
term frequency, we observe that the recall on a query is
positively correlated with the frequency of the least frequent
MeSH term. Therefore, if the query contains a rare MeSH
term, it is more likely that the query will have a low recall.
We found that the F1 score of a MeSH term has a positive
correlation with its frequency in the training set (Pearson
correlation: 0.218, p-value: 0.003). Therefore, the F1 score of
the rare MeSH term might be low due to the lack of training
instances, which brings down the retrieval performance on the
query. Therefore, automatic indexing systems should put more
efforts into improving the performance on rare MeSH terms.

2) Correlation between query complexity and query-level
performance: The recall on a query is negatively correlated
with the number of MeSH terms used in a query. One
possible explanation is that queries with more MeSH terms
are more likely to contain low-performing MeSH terms. We
found that there is a strong correlation between the number
of MeSH terms and the worst MeSH-level F1 in a query
(Pearson correlation: -0.547, p-value: 0.003). Therefore, the
more MeSH terms a query has, the more vulnerable it is to
poor MeSH indexers.

There is no significant correlation between the query-level
performance and the number of AND’s in the query. We found
that the number of MeSH terms is strongly correlated with
the number of OR’s in a query (Pearson correlation: 0.977,
p-value: 0.000), which indicates that when a query involves
more MeSH terms, those MeSH terms are mostly connected
by OR. This in turn explains why we see a negative correlation
between the query-level performance and the number of OR’s
in the query.

C. Case Studies

To understand how the drop in search performance in-
fluences user’s search, we provide three case studies below
using the ProbBERT method. We selected three queries on
which ProbBERT gives various performance: one query with
F1 = 0.7513, one query with F1 = 0.4583, and one



TABLE III: Pearson correlation between query-level performance (precision and recall) and different term-level characteristics.
‘∗’ indicates a significant correlation (p < 0.05) and ‘†’ indicates a moderately significant correlation (0.05 ≤ p < 0.1).

Worst F1 Avg F1 Best F1 Highest freq. Lowest freq. # of terms # of AND’s # of OR’s

Query-level precision 0.290 0.370† 0.321 0.196 0.140 -0.226 -0.137 -0.222
Query-level recall 0.387∗ 0.366† -0.033 -0.139 0.403∗ -0.378† -0.144 -0.377†

with F1 = 0.0. Imagine a clinician issues the three search
queries in the testing set, which contains 1,555,915 articles.
We compared the subset of articles retrieved using ProbBERT
and using the ground-truth MeSH labels provided by humans.
The set of articles retrieved using human-labeled MeSH terms
are treated as relevant articles and those not retrieved are
treated as non-relevant.

1) Case 1: For case study 1, we looked into the query
related to clavicle fractures. The detailed query is shown
below. On the search query, ProbBERT reaches a precision
of 0.7184 and a recall of 0.7872. If the clinician issues the
search query in the testing set, ProbBERT would retrieve 103
articles missing 20 relevant ones (e.g. PMID 32295588, PMID
28159682, PMID 27765500). For instance, PMID 28159682
(“Development of an injectable pseudo-bone thermo-gel for
application in small bone fractures”) describes a study of a
drug developed to heal small bone fractures such as clavicle
fractures. Among the 103 retrieved articles, 29 are non-relevant
(e.g. PMID 30948397, PMID 31677623, PMID 31415405).
For instance, PMID 30948397 (“Pucker sign in an adult distal
radial fracture”) mentioned that skin puckering is associated
with clavicular fractures. However, the article provides a case
of radial fracture instead of clavicular fractures. Both PMID
31677623 and PMID 31415405 were labeled with Clavicle,
and they were also assigned the Fracture Fixation, Internal
instead of Fracture Fixation. Although they are not relevant
to the given search query, they might still be relevant to the
searcher’s interests due to the relatedness of these two terms.

1. Clavicle/
2. Fractures, Bone/ or Fracture
Fixation/ or Fracture Healing/

3. 1 and 2
4. Animals/
5. Humans/
6. 4 not 5
7. 3 not 6

2) Case 2: For case study 2, we looked into the query
related to infant sepsis. On the search query, ProbBERT reaches
a precision of 0.3738 and a recall of 0.5923. If the clinician
issues the search query in the testing set, ProbBERT would
retrieve 618 articles missing 159 relevant papers (e.g. PMID
375620, PMID 918581, PMID 879115). Among the 618
retrieved articles, 387 articles are non-relevant to the search
query (e.g. PMID 6798907, PMID 6787924, PMID 6783064).

1. Sepsis/ and Infant, Newborn/

3) Case 3: For case study 3, the search query is related
to nutrition therapy of renal insufficiency. On this search
query, ProbBERT has zero precision and recall. Therefore,
using automatic indexing, none of the 14 relevant articles
(e.g. PMID 23123667, PMID 22177826, PMID 20708074)
could be retrieved. ProbBERT retrieves 68 false positive papers
(e.g. PMID 87126, PMID 113851, PMID 104103). These three
papers are all labeled with “Amino Acids” and other MeSH
terms potentially related to nutrition. However, none of them
are labeled with “Renal Insufficiency” (the lowest-performing
term in this query; F1 = 0.0057).

1. Renal Insufficiency/
2. Nutrition Therapy/
3. Nutritional Requirements/
4. Energy Intake/
5. Infusions, Parenteral/
6. Gastrostomy/
7. Dietary Proteins/
8. Amino Acids/
9. Glucose/
10. or/2-9
11. 1 and 10

D. Dividing Indexing Work Between Humans and Machines

Our analyses above shows that the underperforming terms
in automatic indexing are the major bottleneck of query-level
search performance. Their low prevalence in the training set
makes it intrinsically challenging for machine learning models
to predict. On the other hand, manual indexing cannot scale
up to large document collections even though it ensures high
search performance. In this section, we seek to find the balance
between full automatic indexing and full manual indexing. We
imagine a mixed indexing scenario where we use an algorithm
to only assign terms that can be accurately predicted, and
still rely on humans to assign terms on which an algorithm
underperforms.

To simulate this mixed indexing scenario, we replace
machine-assigned terms with human-assigned ground-truth
terms if ProbBERT does not achieve a term-level F1 score
higher than a threshold t. After the replacement, we re-
evaluate the average query-level performance. When t = 0,
no machine-assigned terms are replaced, and the query-level
F1 equals the fully automatic result reported in Table II (P =
0.427, R = 0.554). On the other hand, when t = 1, all terms
are ground-truth assignments and the query-level performance
is perfect (P = R = 1.0). As we increase t from 0 to 1, a
progressively larger underperforming subset of the 183 MeSH
terms are replaced with ground-truth assignments, and we



Fig. 3: Average query-level performance when replacing in-
accurate automatic indexing results with ground-truth/manual
indexing results. A point (x, y) on a curve shows the average
query-level performance is y when terms with F1 score ≥ x
are automatically assigned and terms with F1 score < x are
manually assigned. The two dashed lines show that the average
query-level precision/recall is 0.9 (0.95) when terms with F1
score ≥ 0.65 (0.8) are automatically assigned and the rest
terms are manually assigned, respectively.

expect to see a monotonically increasing trend in query-level
performance. The trend is shown in Figure 3.

Figure 3 shows that in order to achieve above 0.9 (0.95)
query-level precision/recall, one can use automatic indexing
to assign terms that have above 0.65 (0.8) F1, respectively.
The underperforming terms that have below 0.65 (0.8) F1
are manually assigned, which collectively account for 15.87%
(21.33%) of MeSH term instances, respectively. An explana-
tion for these relatively small fractions is that these under-
performing terms are also rare terms. This implies that an
indexing algorithm does not need to be perfect to be useful
in delivering high semantic search performance if automatic
indexing methods are in charge of (1) assigning terms that have
high predictive performance directly to documents, and (2)
recommending terms that are underperforming but potentially
relevant to assist humans in making the indexing decision.

This analysis can be useful in two way. First, for technical
research on MeSH term indexing algorithms (e.g., the BioASQ
large-scale indexing challenge), it answers “how good is
good enough” if the indexing workload is divided between
algorithms and human experts. From a performance evaluation
standpoint, the analysis highlights the importance of improving
the predictive accuracy for those difficult terms, instead of
placing equal importance on all terms. Second, for semantic
search service providers (e.g., PubMed), this analysis shows
a methodology for determining which index terms can be
automatically assigned without severely impacting index term-
based search performance, and for quantifying the tradeoff
between the cost of human review/curation vs. query-level
search performance.

E. Limitations

A main limitation of the above analyses is that our experi-
ment only used a small query set. The ideal query set is the
log of search queries containing MeSH terms submitted to a
real search engine such as the PubMed. We could not find such
publicly available query logs, and therefore constructed a small
query set. We believe the analysis methodology presented here
is useful when such query logs are available.

Another limitation is that in literature search, MeSH terms
are often used together with free-text terms. Our study con-
sidered Boolean searches that only contain MeSH terms with-
out free-text terms, which are less used in literature search.
However, Boolean combinations of clinical terms are widely
used to define complex high-level concepts in computational
phenotyping [4]and value sets [28].

V. CONCLUSION AND FUTURE WORK

In this work, we sought to understand the performance
impact of using automatically assigned terms in semantic
Boolean retrieval. We found that probabilistic logic can bet-
ter handle the uncertainty of predicted terms in document
retrieval; query-level performance strongly correlates with
underperforming terms in a query; and mixing a small amount
of manual indexing into automatic indexing achieves excellent
query-level performance. Although we used the specific case
of MeSH terms and literature search, the findings have impli-
cations for future work on automatic indexing in general.

Incorporating uncertainty of predicted terms in seman-
tic Boolean search: Automatic indexing algorithms often
assign index terms with a degree of uncertainty, expressed
through classifier-predicted probabilities or ranker-generated
scores (which can be converted to predicted probabilities [20]).
Terms are then assigned to documents as binary labels by
taking terms with a score above a threshold or taking the top
k terms. This procedure discards the inherent uncertainty in
machine predictions. When these inaccurately assigned terms
are used in Boolean searches, they are treated as if they
were accurately assigned by humans, leading to subsequent
retrieval errors. Our comparison of binary vs. probability
indexing algorithms shows that it is beneficial to incorporate
the uncertainty of predicted terms in subsequent Boolean
searches by replacing Boolean logic with probabilistic logic.
This naturally gives a ranked list of documents by following
the probability ranking principle.

Emphasizing low-performance terms in automatic in-
dexing algorithm training and evaluation: Our analysis
shows that low-performance terms are “the shortest planks
of a bucket” – they are the limiting factors of query-level
performance. Therefore, future research on automatic indexing
algorithm training and evaluation should pay special attention
to the subset of terms that are rare and/or still suffer from rel-
atively low predictive performance. An emerging line of work
on long-tail classes has been exploring similar challenges [30].
For example, a high recall of the correct term among the top-k
can be a useful metric if the goal is to ask human indexers to
review the list of potentially relevant candidate terms.



Dividing indexing work between machines and humans:
We advocate using manual indexing on terms where auto-
matic indexing falls short. This strategy was employed by
NLM’s MeSH term indexing before 2022 [16]. However,
in NLM’s most recent document, it is unclear how human
review/curation efforts are combined with automatic term
assignments in the ‘MTI-Auto’ system [2]. Our work shows
that complementing automatic indexing with manual indexing
can prevent low-performing terms from impacting query-level
performance. Since low-performing terms are also rare, the
associated manual indexing workload is relatively small com-
pared to the entire indexing workload measured by the number
of term assignment instances. In the long run, an increasing
amount of labels for rare terms may become available. This
will hopefully improve automatic indexing performance on
those terms and the amount of human indexing work will
gradually decrease.
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APPENDIX

A. Accounting for Imbalanced Data Distribution

1) Upsampling Rare Concepts: MeSH classifiers in the
composable approach and query classifiers in the monolithic
approach face the problem of imbalanced class distribution
since positive examples are always orders of magnitude fewer
than negative examples in the training set. The imbalanced
class distribution generally presents a challenge for machine
learning algorithms. To train high-quality classifiers, we used
the following sampling method to incorporate more instances
from rare classes.

Suppose we have in total M possible labels and N docu-
ments in a sub-sample. If all labels were mutually exclusive,
then each label should account for N/M documents, called the
“fair share” of a label. We define a class c to be rare if, Nc, the
number of documents associated with it, is smaller than 10%
of the “fair share” (i.e., Nc < 0.1 × N

M ). We then up-sample
the rare classes to reach the 10% “fair share.” In this study,
M is the total number of MeSH terms and queries (i.e., 183
+ 27 = 210), and N is the size of two training subsets (i.e.,
500,000 and 1,000,000). After the sampling process, the sizes
of the two training datasets are 514,686 (1.03 × 500,000) and
1,025,855 (1.03 × 1,000,000). We denote the two datasets as
“subset-500K” and “subset-1M”. We found that models trained
on subset-1M are not significantly better than models trained
on subset-500K. Therefore, we used models trained on subset-
500K in the main text.

2) Loss Functions for Imbalanced Class Distribution: One
challenge of training classifiers for MeSH and query prediction
is the imbalance between positive and negative instances in the
training dataset. The ratio between the positive and negative
instances is from 1:0.5 to 1:11968 for MeSH terms and from
1:254 to 1:10090 for queries. We applied a weighting factor for

the positive and negative class in the loss function to account
for this.

For Logistic Regression, we used the formula:

CE(pt) = −αt log(pt) (1)

αt =
nsamples

nclasses × nsamples in class t
(2)

where CE represents cross entropy loss; pt is the estimated
probability of the ground-truth class (p0 = 1− p1); αt is the
weighting factor calculated through inverse class probability.

For BERT, we applied focal loss [14] as it added stability
to the training process. The following formula describes focal
loss:

FL(pt) = −αt(1− pt)γ log(pt) (3)

where FL represents focal loss; γ and αt are hyperparameters
set empirically, and we used the default values (γ = 2, αt =
0.25), which were found to be most effective in the paper that
introduced focal loss.

B. Model Hyper-parameter Settings

LR. Logistic Regression models were trained through scikit-
learn where we used L2 regularization, LBFGS optimizer,
and a max iteration of 1,000. We set “class weight” to
be “balanced” to add the weighting factor described in the
previous section. All the other hyper-parameters are set to
default.

BERT. We implemented BioBERT using Huggingface
Transformers. We used grid-search for hyper-parameter tun-
ing: learning rate {5e-6, 1e-5, 2e-5, 3e-5}, number of epochs
{1, 2, 3}. We used a batch size of 8. We found that a learning
rate of 1e-5 and three epochs gave the best performing models.

C. MeSH Term Classifier Performance

TABLE IV: Macro-averaged classification performance (aver-
aged over 183 MeSH terms in the experimental query set) on
subset-500K and subset-1M.

Data Model Precision Recall F1

subset-500K LR 0.393 0.503 0.422
BERT 0.489 0.460 0.445

subset-1M LR 0.393 0.538 0.434
BERT 0.487 0.444 0.431
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