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Abstract—Traditional approaches to data visualization have often focused on
comparing different subsets of data, and this is reflected in the many techniques
developed and evaluated over the years for visual comparison. Similarly, common
workflows for exploratory visualization are built upon the idea of users interactively
applying various filter and grouping mechanisms in search of new insights. This
paradigm has proven effective at helping users identify correlations between
variables that can inform thinking and decision-making. However, recent studies
show that consumers of visualizations often draw causal conclusions even when
not supported by the data. Motivated by these observations, this article highlights
recent advances from a growing community of researchers exploring methods that
aim to directly support visual causal inference. However, many of these
approaches have their own limitations which limit their use in many real-world
scenarios. This article therefore also outlines a set of key open challenges and
corresponding priorities for new research to advance the state of the art in visual
causal inference.

D ata visualization has become a ubiquitous tool
for data exploration and communication for a
wide range of audiences. Interactive visualiza-

tions now can be found in everything from GUI-based
visual analysis tools for everyday office workers (e.g.,
Tableau), to websites produced by major media com-
panies (e.g., FiveThirtyEight or the New York Times),
and in notebook computing environments used by data
scientists (e.g., RStudio, JupyterLab, and Observable).
Visualizations have also become key components in
tools ranging from consumer-focused mobile apps to
manage health and wellbeing (e.g., Apple’s Health
app) to expert-focused information systems such as
electronic health record software used at most major
hospitals (e.g., Epic). Visualizations have been used to
help engineers diagnose and improve machine learn-
ing models, to help factories optimize manufacturing
processes, and to to share news with the general public
about the spread and risk of disease during the recent
COVID-19 pandemic.
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In each of these applications, visualizations are
leveraged to communicate data to a human consumer
who then interprets what they see and draws conclu-
sions based on the data. Often, these conclusions then
motivate action. For instance, an analyst developing
deep learning models might choose to adjust a pa-
rameter of their model after seeing a strange pattern
in a visualization of model outputs. A manufacturing
expert might decide to adjust a machine’s settings to
optimize production after visually analyzing data from
sensors placed along an assembly line. A traveler may
decide it’s safer to travel on vacation to one city vs.
another after viewing infection and hospitalization data
on a COVID-19 dashboard.

In each of these cases, users are making infer-
ences about relationships between the variables dis-
played in a visualization and using those inferences to
guide their decision-making process. The correctness
of a user’s decisions, therefore, is clearly contingent
upon the correctness of the inferences that they make
about the meaning of their visualized data. Along
these lines, recent studies [1], [2], [3] have shown that
people often interpret visualized patterns as indicators
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FIGURE 1. Example causal graphs: (a) a simple causal graph in which social media use decreases happiness, (b) a graph
with a confounder, in which the apparent causal relationship between social media use and happiness is in fact caused by a
third factor, number of coworker friends, that has a causal effect on both, and (c) a graph with a collider, in which the apparent
causal relationship between social media use and happiness is due to both having a causal effect on this third factor. In this
case, the collider also exhibits a cycle.

of causal relationships between visualized variables.
Critically, this inference of causality occurs even when
such conclusions are not supported by the data or
visualization.

One aspect of this problem is that users often draw
conclusions that do not properly account for sample
size [1], [3], [4]. This challenge can be partly mitigated
by enhancing visual representations of key information
such as sample size or confidence intervals.

More difficult to solve, however, is a more fun-
damental issue: visualizations are generally designed
to communicate correlation and not causation. More
specifically, there could be mismatches between (1)
a human user’s tendency to draw causal conclu-
sions, and (2) the design of a typical visualization
which provides simplified overviews and/or narrowly
filtered views of complex multi-variate datasets [5].
These types of visualizations generally fail to commu-
nicate the many interactions that can exist between
explanatory variables, and—more importantly—fail to
help users understand the effects of these interactions
on patterns that are in fact visualized. The result is
that visualizations can dramatically mislead users into
drawing erroneous causal inferences.

For example, imagine two groups of individuals
where group A is active on social media and group
B is not. Presented with a chart showing that group A
is overall unhappier, one might infer that social media
activity determines individual levels of happiness. This
relationship is depicted in Figure 1 (a). The absence
of visual cues about the effect of other attributes of
the two groups which may actually be causing the
difference in happiness (e.g., that group A may also

have closer friendships at work and in their local
neighborhood) can lead to users making unsupported
assumptions about social media as a causal factor
in a person’s happiness. Some possible causal rela-
tionships taking friendships at work into account are
depicted in Figure 1 (b) and (c).

Counterfactual reasoning is a central pillar in casual
analysis that has been developed to assist in thinking
about these types of scenarios [6], [7], [8]. Counter-
factuals are hypothesized scenarios that enable us to
examine potential outcomes across different scenarios
in which only a particular factor is altered. Isolating this
factor enables improved reasoning about and under-
standing of causal relationships involving this factor,
e.g. whether or not an individual has coworker friends
in the example above, and can be helpful to better
understand causal relationships. Previous work has
shown that counterfactuals can help improve causal
inferences from visualizations [2].

In this article, we provide an overview of recent
research examining causal inference from visualiza-
tions as well as key areas of related work. We then
argue for research exploring new approaches that help
mitigate the risks of incorrect causal inferences during
exploratory analysis and data-driven decision-making.
More specifically, we argue for research exploring a
new approach to visualization which leverages the con-
cept of counterfactual reasoning as a means to help
users draw more robust and generalizable inferences
from modern data visualizations.
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PERCEIVING CAUSALITY
The expression “correlation does not imply causation”
is an oft-repeated phrase warning against drawing
causal conclusions based only on an observation of
correlation between variables. As the statement sug-
gests, there are many reasons correlations can ap-
pear in data that do not provide direct evidence of a
causal relationship. Yet despite this warning, previous
research has shown repeatedly that people do in fact
tend to improperly assign causal meaning to correla-
tions they observe when using data visualization.

This effect was perhaps most directly described
by Xiong et al. [9] who studied the illusory effect of
visualizations to imply causal relationships across a
number of different types of classical statistical charts
(e.g., bar charts, line graphs, and scatter plots). They
reported illusions of causality across all chart types,
with users confusing correlation with causality.

The results from Xiong et al.’s study showed that
the magnitude of the illusion of causality differed
between different chart types. More specifically, the
results suggested that the magnitude of the causal
illusion was influenced both by the type of visual
encoding employed in a chart as well as the level of
aggregation. In general, the authors found that higher
levels of aggregation tend to increase the implication of
a causal relationship. Similarly, they found that line and
dot encodings implied higher levels of causality than
bar-based encodings. These findings provide some
insights into how design choices influence perceived
causality, but it remains that the illusion was present
across all chart types and therefore cannot be easily
ameliorated just by avoiding certain types of charts.

Another recent study conducted by Kale et al. [1]
provided further insights into perceived causality from
visualizations by leveraging mathematical psychol-
ogy [10] and a causal support model. The study design
adopted by Kale et al. included a ground truth for
the level of causal support behind the data used in
the study. This design allowed, in contrast to other
studies (e.g., [9], [2]), a comparison between that
ground truth and a users’ perceptions. Their study
shows variances by participants when evaluating Di-
rected Acyclic Graphs (DAGs) that either incorporate
or omit a causal linkage between two variables. Users’
assessments frequently deviated from the probabilities
assigned to each causal explanation, with instances of
both overestimation and underestimation of the like-
lihood of causal relationships. These findings further
highlight the challenge of accurately gauging the extent
of evidential support that a specific dataset provides for
a given causal explanation.

Adding to this growing body of data, we published
results from our own study [2] which also gathered
empirical evidence that users tend to assign causal
effects to variables used to group data within simple
bar charts and line graphs. Interestingly, our study also
hinted at some approaches to partially mitigate the
effect which we’ll discuss in more detail later in this
article.

In the same year, Hullman and Gelman [3] argued
for grounding the design of interactive exploratory vi-
sualization tools within formal theories of graphical in-
ference. Their argument recognized the importance of
accounting for how people draw inferences when they
consume visualizations of data. Without this ground-
ing, visual analytics tools would be at greater risk of
inadvertently leading users to invalid inferences from
their data.

Together, these studies provide compelling evi-
dence that users of visualizations tend to assign (often
incorrectly and without valid statistical support) causal
explanations to visualizations of correlated data. This
tendency to perceive causal effect replicates across a
variety of tasks using different widely-used chart types,
and puts users of visualizations at risk of drawing
invalid causal inferences from their data even when
current best practices are followed for constructing the
visualizations.

VISUAL CAUSAL INFERENCE
As described in the prior section, users tend to infer
the existence of causal relationships when interpreting
even basic statistical charts based on correlations.
These causal inferences are often incorrect and not
supported by the data or the corresponding visualiza-
tion designs.

However, it is also true that causal inference is in
fact a critical requirement in many use cases. For this
reason, a number of efforts have been made to build
visual analytics tools that directly support visual causal
inference by adopting workflows analogous to classic
statistical approaches to causal inference.

In statistics, a causal structure model is a mathe-
matical representation that is applied to describe the
causal relationships between a set of variables. These
relationships are typically structured into node-link
causal diagrams, where nodes are variables and links
indicate the possible causal relationships Figure 1. The
most common representation is the Directed Acyclic
Graph (DAG), which is restricted to directed edges
and no cycles. It assumes that each variable (node)
is influenced by its direct parent nodes in the graph
and that there are no hidden confounders or feed-
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back loops. Alternatives relax the acyclic constraint,
adopting a Directed Causal Graph (DCG) structure
that permits cycles which can represent more complex
causal relationships.

Typical visual analytics systems that take causality
into account employ DCGs as their underlying model
of causality. These may exist internally to generate
causal inference statistics which are then visualized,
or the DCGs may be visualized directly via node-
link diagrams. Existing visual analytics systems that
employ causal graphs for user display and interaction
include [11], [12], [13], [14].

The gold standard for exploring causal effects is
the randomized control trial, in which hypothesized
causal structures are typically defined a priori based
on theoretical understanding or prior evidence. Such
studies are common in medical research [15]. Alterna-
tively, statistical mining methods are commonly applied
to find the structure of causal models from datasets
(e.g., [11] computed Hawkes processes [16] while [12]
employed the F-GES [17] model). Regardless of a
causal structure’s construction method, the use of
DCGs within visualization and visual analytics can be a
useful approach for both confirmatory and exploratory
analysis.

Yet despite their value, these types of causal mod-
els also have key limitations. For example, manual
construction methods rely heavily on the assumptions
and expertise of the person defining the model [18].
Moreover, they typically result in small DCGs with
relatively few variables [19]. Statistical DCG models,
meanwhile, have been reported to have difficulty scal-
ing to large and complex datasets without introducing
significant errors and bias [20]. Some approaches,
such as Exploratory Factor Analysis (EFA) [21] have
been proposed to overcome the scalability limitations
of DAG-based applications, but they are only partial
solutions.

More details about limitations are discussed in the
remainder of this section, and these limitations in part
motivate the proposed directions outlined in this article.
However, we emphasize that counterfactual-based ap-
proaches can lead to additional methods to support
visual causal inference that work as a complement
to traditional DCG-based approaches and not as a
replacement.

Data Quality
Data quality is one of the most crucial concerns that
could impact the performance of statistical models.
Most datasets are not originally created for causal
inference tasks and can exhibit many quality issues

that raise questions about the validity of any auto-
matically constructed graphical causal model. More
specifically, statistical models of any kind–including
graphical causal models–can be quite sensitive to
noisy, incomplete, missing, invalid, confounded, or un-
recorded data. Sadly, these limitations are common
in real-world datasets. Furthermore, statistical causal
inference requires well-defined interventions and suf-
ficient variation in the data to overcome confounders
and identify meaningful causal effects. This makes it
even harder to apply effectively to general datasets.

Data Complexity
The rapid development of the big data era in-
troduces another major challenge—data complexity.
Many datasets contain a very large number and variety
of variables. For example, in data-driven healthcare
applications, a single dataset can contain hundreds
of thousands of unique variables [22] including de-
mographics, drugs, findings from imaging, diagnoses,
clinical test results, etc. In these real-world scenarios,
statistical causal models face enormous computational
challenges in terms of scalability. Calculating mean-
ingful and comprehensive causal graphs from such a
vast number of variables, interactions, and potential
feedback loops is not practically achievable in most
cases.

For this reason, most applications of causal graph
modeling focus on relatively small graphs with a very
limited number of variables and interactions in which
the computational complexity can be effectively man-
aged. Once the problem is reduced to a small enough
complexity, computational methods for mining causal
graphs (or workflows that require manual specification
of the causal graph) become possible.

Unfortunately, however, this reduction of the prob-
lem also means that the resulting models are often
insufficiently complex to capture real-world interactions
accurately. Meanwhile, the ever-increasing complexity
of datasets (and the exponentially increasing number
of potential variable interactions that result) means
that this problem will continue to grow even more
difficult for traditional graphical model-based methods
to overcome.

Direction of Causal Relationships
In graphical causal models, detecting the presence of
a causal relationship between variables is not the only
goal. Causal models must also capture the direction
of node links to represent the direction of causal
relationships, i.e., the “from” nodes have a causal effect
upon the “to” nodes for each link. This directionality
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adds to the complexity challenge mentioned earlier,
with similar results: causal graph modeling approaches
are typically limited to very small numbers of variables
and potential causal relationships, and the applicability
of these methods to complex real-world problems is
limited unless the scope of the problem is dramatically
narrowed and simplified.

Limited Inference Levels
Previous work has classified causal inferences along
three progressive levels [6]: prediction, intervention,
and counterfactual reasoning. However, existing visual
analytics systems primarily focus on the two lower
levels of this framework— prediction and intervention,
while neglecting the third level of inference: counter-
factual reasoning.

This limitation may be in part related to the
widespread use of DAG models which do not explicitly
capture reciprocal and counterfactual effects. DAGs
assume unidirectional and acyclic causal relationships
between two variables. However, even for DCGs which
allow cycles, graphical approaches largely focus on
deriving and communicating the existence and mag-
nitude of pairwise causal relationships rather than
counterfactual reasoning about what would happen
under alternative conditions which is the hallmark of
counterfactual reasoning.

COUNTERFACTUALS
Some aspects of the challenges outlined in the prior
section, such as data quality, are ones that can be ad-
dressed in part with better data gathering and archiving
practices. However, the remainder deal with issues of
scale and complexity which render traditional graphical
causal model-based approaches impractical for many
real-world problems. Instead, we argue that an alterna-
tive approach which builds on the foundational concept
of counterfactual reasoning can provide many key
benefits in the context of supporting causal reasoning
while offering a more practical solution for dealing with
data complexity.

What is a Counterfactual
Counterfactuals are a core philosophical construct that
underpins modern causality theory [7], [23]. Counter-
factual thinking posits that if A causes B, then in an
alternative, “counterfactual” scenario where A does not
occur, B should not occur. Counterfactual thinking also
asks us to investigate possible scenarios in which A
does not occur but B occurs nonetheless. Such a
scenario suggests that B may in fact be caused by

factors other than A. Byrne [24] adds that counter-
factuals can serve an explanatory function, amplifying
causal judgment. For instance, if one could know that
an alternative scenario that eliminates A would not
lead to B, it would amplify one’s judgment of a causal
relationship between A and B. In contrast, knowing that
an alternative scenario eliminates A but also leads to
B would weaken confidence in the causal influence of
A on B.

As a concrete version of this idea, consider the
example from this paper’s introduction about the happi-
ness of those active on social media vs. the happiness
of those who do not use social media. If those without
social media are identical to those who do use social
media in every way except for their social media usage
(they have the same number of close friendships at
work, the same connections to neighbors, etc.), then
that group serves as a counterfactual to the social
media users. This gives us confidence that in fact the
only remaining difference between the populations—
the degree of social media use–is causally linked to
the differences in happiness.

The caveat to this approach, of course, is that true
counterfactuals must be identical in every way except
for the factor being considered for causal effect, i.e.
identical in every way except for their use of social
media. This is possible, perhaps, in philosophical dis-
cussions of causality. However, in practice, we are
typically limited to “highly similar” instead of identical,
as many factors are unobserved. Moreover, even those
factors that are accurately captured within a dataset
typically exhibit some degree of variance.

Yet despite these practical limitations,
counterfactual-based approaches are widely used
in machine learning for tasks such as prediction
(e.g., [25]), explainable AI (e.g., [26]), and fairness
(e.g., [27]). In contrast, counterfactuals have been less
commonly used within the visualization community.
Moreover, we argue that there could be opportunities
to leverage this concept in new ways for visualizations
to support users’ improved causal reasoning.

Visualizing Counterfactuals
To explore the potential benefits of leveraging
counterfactual-based reasoning within the context of
visualization, we recently conducted a study using
an early prototype—named CoFact—that leveraged
similarity-based counterfactuals [2]. This pilot project,
a screenshot of which can be seen in Figure 2, ex-
plored how counterfactuals could be used when filters
are applied to narrow the focus of analysis during
exploratory visualization. More specifically, this project
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FIGURE 2. The CoFact visualization system [2] leverages counterfactuals to help better communicate the relationship between
variables of interest. In this figure’s example, the user has applied a filter constraint on square footage (a) to a multidimensional
house sales dataset. In response, they are shown the resulting included, counterfactual, and excluded subsets (b), along with
their corresponding distributions for a selected outcome feature of interest: house sale price (c). Additional feature-to-outcome
relationships can be explored with supplementary visualizations (d–i). The tool supports comparisons between an included subset
(data points that match user-specified inclusion criteria) and a counterfactual subset containing similar data points selected from
those data points that do not meet the inclusion criteria.

proposed the definition of several important subsets
when visualizing data for a given combination of filter-
ing constraints.

First, CoFact defined the included data subset as
the portion of a dataset that meets the inclusion crite-
ria. Second, it defined the excluded data subset as the
portion of a dataset that did not meet the inclusion cri-
teria. In a classic design, a visualization system might
visualize both the included data and the excluded data
to enable users to compare the two subgroups. For
example, in our motivating social media scenario, a
visualization might show happiness levels for social
media users (the included subgroup) against those
who don’t use social media (the excluded subgroup).
In this classic design, users might incorrectly assign
a causal effect to the inclusion criteria (use of social
media) to explain visualized differences in happiness.

CoFact then went beyond this classic approach to
additionally define the counterfactual subset as the

portion of the excluded subset that is most similar
to the included subset. CoFact computed a Euclidean
distance measure from each data point in the excluded
subset to all data points in the included subset to
determine a counterfactual subset that contains the
closest data points. This process is illustrated in Fig-
ure 3. In our example scenario, the counterfactual
subset would be people from the excluded “do not use
social media” subset who are most similar to people
from the included “social media users” subset across
all other dimensions in the data. In other words, the
counterfactual subset would include only the excluded
people who could best serve as counterfactuals to
the included subset. Various other matching methods
have been proposed in the statistical causal inference
literature, such as propensity score matching [28] and
Mahalanobis distance matching [29]. Such methods
could also be applied within CoFact to determine the
counterfactual subset.
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CoFact automatically derived and visualized this
counterfactual group for comparison against the in-
cluded subset during exploratory analysis. When
studying the effect of this use of counterfactual informa-
tion during visualization, we found that users presented
with a visualization of the counterfactual subset were
significantly more successful at identifying spurious
correlations (i.e., correlations unlikely to be indicative
of a causal relationship) that were more accurately
explained by relationships to other variables within the
dataset. When using a control version of the system
that did not present counterfactual data, users were
significantly more likely to incorrectly assign causal
effects to these same spurious relationships. A more
detailed presentation of the study results and a dis-
cussion of its implications are available in the original
publication [2].

Advantages and Limitations
Counterfactual visualizations such as those used in
CoFact offer several advantages over alternatives such
as visual causal analysis using causal graphs. First,
unlike causal graph mining, counterfactuals can be
scalably calculated and used with both high-volume
and high-dimensional data. Second, the implemen-
tation required to compute counterfactual subsets is
relatively simple and straightforward making it more
transparent and explainable. Moreover, the approach
lends itself to easy integration into many existing visu-
alization workflows without requiring that users learn
about causal graphs and other advanced concepts.

It is also important to note that this approach is
not tied to any specific visualization type, but rather
can be used in conjunction with a wide variety of rep-
resentations including basic statistical graphics (e.g.,
bar charts, line charts, scatter plots) as well as more
complex or bespoke visual designs. Moreover, coun-
terfactuals are not limited to scenarios where causal
structures are computationally derived from data. They
can offer significant value in contexts where causal
models are predefined as well, such as in controlled
experimental settings. Counterfactual analysis can be
used to help confirm or refute prior causal assump-
tions, providing a powerful means to assess existing
models.

However, counterfactual visualizations also have
some important limitations to consider. First, the entire
approach requires data subsets (in order to form sub-
sets for comparison). As a result, they are not useful
when looking at overviews of entire datasets. Second,
the approach depends on the identification of a “good”
counterfactual subset which can be difficult to quantify

and at times may not be present in the data. This re-
mains an open challenge, though alternative similarity
methods based on information-theoretic metrics such
as entropy, or topological metrics, could be investigated
as tools to help identify “good” subsets. Finally, adding
counterfactuals to visualizations can make the visual
representation more difficult to interpret and cause an-
alysts to work more slowly, as there is more information
to process.

FUTURE OPPORTUNITIES FOR
VISUAL CAUSAL INFERENCE

While our work on CoFact and the other related studies
presented in this article have started to answer several
interesting questions related to visual causal inference,
they have also introduced several new opportunities for
future research and experimentation. Informed by both
our own work as well as related research from many
others, we have identified several important topics that
demand further attention in future research. Advances
on these topics would both help address some of the
limitations we enumerated in the prior section as well
as help advance our ability to create better visual
analytics tools that help users draw improved causal
inferences from complex data.

Better Cognitive Models of Causal Inference
with Visualization
As noted previously, multiple studies (e.g., [2], [9]) have
shown that users draw causal inferences even from
traditional visualization designs. In addition, a prelimi-
nary theoretical model from mathematical psychology
has been applied to help understand how these causal
inferences are made [1]. These studies suggest that
aspects of a visualization’s design can have an effect
on the magnitude of the causal relationships that users
perceive. However, we still lack a well-grounded high-
level understanding of how human cognition forms
causal inferences in complex contexts [10]. Further-
more, cognitive biases and illusions can affect the
assessment of causal relationships [30].

For these reasons, a grand challenge in this area
is the development of a rigorous and comprehen-
sive model that accurately captures the way in which
users cognitively approach analytical questions and
draw causal conclusions. Such a model would need
to incorporate aspects of a visualization’s design, the
data that users have access to, the users’ levels of
expertise, cognitive states and biases, as well as other
related factors. If achieved, such a model would greatly
advance our understanding of how users think about
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FIGURE 3. A counterfactual subset contains data points from the excluded set that are the most similar to those in the included
set. Prior work [2] has shown that a visualization that allows users to compare the counterfactual subset against the included
subset (c) supports more accurate causal inferences compared to a more traditional approach (b).

causal relationships and help guide the creation of a
new generation of visual analytics tools.

Improving Communication of Counterfactual
Visual Representations
Our initial research on exploring counterfactual visu-
alizations, embodied in our CoFact system [2], has
demonstrated that even relatively naive approaches to
incorporating counterfactuals into visualization work-
flows can help improve the accuracy of users’ causal
inferences. However, our evaluations also showed that
the additional information could increase the complex-
ity of a visual analytic tool’s interface and require extra
time to interpret. This can result in slower analytic
performance and, potentially, confusion about what is
being visualized. This is in part because the concept
of counterfactuals is not necessarily familiar to many
users of visual analytics software.

Advances in our understanding of how best to
communicate counterfactual information within a visu-
alization is a research question that requires additional
attention. Improvements in how we communicate coun-
terfactual information will make counterfactual-based
methods more accessible to a larger audience, and
will potentially help users work more quickly while
maintaining the quality of their visual causal inferences.

Advances in Measures for Evaluating the
Quality of Counterfactual Subsets
Another open question centers on what makes a
“good” counterfactual subset. This will require a deeper

understanding of how to identify similar subsets within
complex high-dimensional data. We note that this is
an especially difficult problem because similarity is
inherently both a task- and data-dependent question.
Even for the same dataset, the “most similar” data
points may be different depending upon which analyti-
cal question is being asked. Moreover, even if the most
similar data points can be reliably identified, we must
also understand what constitutes “good enough” to
justify a given conclusion about the causal relationship
between variables.

Improving Guided Exploration

Counterfactual-based visualizations have an additional
potential benefit in the context of guided exploration.
We have already discussed how counterfactuals have
the potential to help users make better causal in-
terpretations of their data. This is accomplished by
providing users with the counterfactual subset as a
more appropriate comparison for the included set. We
believe that this approach could potentially serve as
the basis for improved techniques that help guide users
toward more statistically interesting subspaces of their
data for future analysis. Currently, many guidance ap-
proaches rely on correlation. However, incorporating
counterfactual concepts may help researchers develop
more effective guidance techniques which help users
avoid spurious correlations and instead navigate to-
ward visualizations that depict more meaningful causal
relationships.
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CONCLUSION
The tendency for consumers of visualizations to draw
causal inferences based on non-causal relations and
incomplete evidence is unavoidable. This inclination
can lead to incorrect conclusions being drawn from
data along with subsequent impaired decision-making.
Visualization designers who care about the accuracy of
user interpretations should therefore employ methods
to improve causal inferences. Although a body of work
exists integrating statistical causal models, such as
DAGs, into visual analytics tools to aid in causal rea-
soning, there are shortcomings to such approaches,
especially with respect to dataset size and complexity.

Recent work investigating the use of counterfac-
tuals with visualization and visual analytics systems
has shown promise as a practical, general-purpose
method that scales well and integrates easily with
common visualization workflows and visual designs.
Counterfactuals can encourage users to think more
deeply about a dataset and investigate relationships
between variables that can help confirm or deny as-
sumptions of causality. However, there remain several
open challenges that must be solved for counterfactual
approaches to reach their full potential. The visual-
ization community should take these challenges on
through new research that enables both advances in
foundational theories of counterfactual visualization as
well as applications that depend on more accurate and
reliable visual causal inference.
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