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Contextual Visualization 
Making the Unseen Visible to Combat Bias During 
Visual Analysis 

Unseen information can lead to various “threats to validity” when 

analyzing complex datasets using visual tools, resulting in 

potentially biased findings.  We enumerate sources of unseen 

information, and argue that a new focus on contextual 

visualization methods is needed to inform users of these threats 

and to mitigate their effects. 

As technology has grown more ubiquitous and affordable, the mass collection of large and com-
plex datasets has become widespread across a range of domains. Websites gather detailed logs of 
user behavior. Transportation systems gather detailed logs of traffic, accidents, and other inci-
dents.  Health systems are amassing large databases of electronic medical records for patients.   
In these domains and others, such “Big Data” resources are being gathered in ever-increasing 
numbers with the promise of supporting precision, evidence-based decision making.  This vision 
is tantalizing and widespread, and there is enormous enthusiasm for the value of data-driven 
insights across these numerous and varied application areas.  The excitement reflects a core 
promise of Big Data: that by capturing data “in the wild”—with huge numbers of variables and 
at enormous scale—it is possible to gain more detailed, precise, and nuanced insights into com-
plex problems. 

At the same time, advances in visual analytics technologies have led to a much broader use of 
visualization-based exploratory analysis tools.  Visual analytics systems combine interactive 
exploratory visualization and data analysis capabilities to put humans “in the loop,” amplifying 
human cognition to enable improved problem solving.1 Visual analytics techniques go well be-
yond the classic visualization dashboard model made popular by earlier generations of business 
intelligence software.  As a result, visual analytics systems are being used to help users solve 
increasingly complex analytical tasks. 

Visualization technologies designed to support these two trends— (1) increasing data complexity 
and (2) increasing cognitive task complexity—are key enablers for the growing use of Big Data 
analytics and data-driven decision making.  Visualization is already widely viewed as a critical 
technology for more effective data analysis, interpretation, and communication.2  Moreover, new 
advances in the field continue to extend our ability to work with more complex data and more 
complex cognitive tasks, increasing the value of visual analytics tools.  
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Often, the challenge of increased complexity is assumed to be a problem of data volume.  How-
ever, visualization can be ideally suited to communicating large volumes of data by directly 
summarizing huge numbers of data records with simple visual representations of aggregate 
measures.  For instance, a bar chart showing the distribution of a single categorical variable (e.g., 
the proportion of men and women in a group of people) works equally well with ten records as 
with 1 billion records.  Moreover, significant progress has been made to address other challenges 
of scale: (1) the computational challenges of computing aggregate statistics from large-volume 
data (e.g., cloud computing and the map-reduce framework3); and (2) progressive visualization 
techniques for integrating long-running computations with interactive visual representations.4 

Data and task complexity, however, pose a more fundamental challenge to the science of visuali-
zation: unseen information.   Well-designed visualizations are effective because they graphically 
communicate data in such a way that users’ visual perception can detect patterns and derive in-
sight.  However, when either a dataset or a user’s analytical tasks grow complex, key infor-
mation may be left out of the visualization. This can be due to both (1) the inherent difficulty in 
visualizing and conceptualizing high-dimensional data and relationships, and (2) the fact that 
human cognition incorporates contextual information—such as expertise and derived insights—
which are often not directly represented within the data made available to the underlying visuali-
zation system. 

UNSEEN THREATS TO VISUALIZATION VALIDITY 
The fact that a variety of critically important information can be omitted from a visualization 
threatens the fundamental validity of many visual tools which users are now employing to solve 
their analytical problems.  The “threats to validity” posed by this unseen information can come 
from a variety of sources, including: 

• Summarization methods which can obscure fine-grained information 
• Narrow fields of view which focus only on portions of a dimension 
• Omitted dimensions of data which are not visually represented within a visualization 
• External data not contained within the dataset under analysis 
• Cognitive challenges, such as contextual knowledge and cognitive biases 

These threats to visualization validity are in many ways analogous to well-known challenges in 
statistics, experimental design, and observational studies.5 For example, any approach involving 
statistical inference requires a set of assumptions—a statistical model—the validity of which will 
drastically impact the quality of any statistical analysis. Statisticians must diligently maintain 
awareness of these threats and mitigate their effects to ensure the validity of their analysis. Simi-
larly, we argue, visual analysts must maintain awareness of these issues and endeavor to over-
come them to produce valid and meaningful visual discoveries. Moreover, visualization tools 
should support this awareness by employing appropriate contextual visualization methods. Cre-
ating more robust visual analytics tools will enable more robust analysis across a wide range of 
disciplines. 

Summarization  
Widely used in visualization systems, summarization algorithms are critical tools for reducing 
data complexity.  For instance, aggregation can be used to combine statistics for multiple varia-
bles within a single visualized measure.  Consider the visualization of health data in Figure 1, 
showing recent estimates for the incidence rates of diabetes and heart disease in the United 
States. This view can provide valuable information about which of these two conditions is most 
prevalent, but also obscures the fact that each condition is actually a heterogeneous category 
representing multiple different manifestations of disease.  For example, while recent estimates 
suggest that 9.4% of Americans were diabetic, this population was divided unevenly between 
Type 1 (insulin-dependent, ~4% of diabetics) and Type 2 (adult-onset, ~96% of diabetics) diabe-
tes.  Moreover, each of these categories can be further refined into fine-grained disease de-
scriptors. While some summarization methods, such as aggregation and summation, hide data in 
predictable ways, other more sophisticated summarization methods, such as topic modeling or 
spatial embedding algorithms (e.g., t-SNE or MDS) can be less transparent about what infor-
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mation is lost. This issue is exacerbated as tasks grow in complexity, where more sophisticated 
(and less transparent) summarization methods may be needed, and the more nuanced information 
that is lost during summarization may be important to consider. 

 
Figure 1. Disease incidence rates for adults within the United States. Based on statistics from the 
Centers for Disease Control and Prevention and the American Diabetes Association. 

Narrow fields of view 
Visualizations will often constrain the data they display to a subset of a given dimension. For 
example, a map-based visualization will typically provide a view of data within a specific region 
rather than the entire dataset. This enables the visualization to display more fine-grained data 
(with less summarization), but also hides data from outside the focused region.  Similar ap-
proaches are used in various visualization types, including 3D volume datasets rendered within 
scientific visualization, times series visualizations, and even along more abstract dimensions 
using techniques such as zoomable hierarchical visualizations which enable users to focus on 
subtrees within a hierarchy. 

Omitted dimensions  
When dealing with high-dimensional datasets, it is typically necessary to visualize a small subset 
of the dimensions at any given time. Techniques such as dimension selection and dimensionality 
reduction can be used to reduce the number of dimensions to be visualized, but result in a loss of 
information. This is true even for datasets with relatively few dimensions (e.g., 10-20 dimen-
sions) where it can be difficult to display all attributes simultaneously. However, omitting di-
mensions is especially common when visualizing very high-dimensional data, such as electronic 
health record (EHR) data, where the number of dimensions can be in the tens of thousands or 
more.  For example, the widely used ICD-10-CM coding system contains approximately 70,000 
diagnosis codes (just one of several types of medical information in the EHR). While often nec-
essary, omitting dimensions from a visualization can obscure shifts in variable distributions due 
to operations such as filtering. Yet visibility of such shifts are critical because they can signify 
validity problems such as selection bias or systemic data quality issues which can bias the user’s 
visual findings.  

External data   
The threats to validity described so far address challenges related to a visualization being unable 
to depict the entirety of a dataset. It is also critically important to recognize that even the entirety 
of a dataset provides an incomplete record of the real world for many tasks. Even very large and 
complex datasets often only capture certain aspects of a problem, with relevant variables remain-
ing unrecorded. Moreover, even for variables where data has been captured, systemic properties 
of the data recording process can result in biased sampling.  For example, consider a scenario 
related to traffic monitoring and accident prediction.  A dataset may capture traffic volumes and 
accident locations at various times of day.  This data can be used as the basis for analysis, but if 
weather data—clearly a contributing a factor in some accidents and traffic delays—is omitted, it 
would not be possible for a visualization to provide a comprehensive representation of the fac-
tors leading to traffic delays.  Similarly, if traffic data is captured predominantly from busses and 
taxis rather than private vehicles, any analysis of the data would be biased toward the detection 
of predictive factors associated with public transportation. The threat of missing external data is 
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especially problematic given the growing complexity of tasks to which visual analytics technol-
ogies are being applied.  As analysts aim to answer questions about increasingly complex phe-
nomena, it becomes ever more important to obtain comprehensive and representative datasets to 
support their analytical goals.   

Cognitive challenges  
The mind of the analyst is itself a source for an additional class of threats to visualization validi-
ty.  First, an analyst brings to any analysis task a wide range of preconceptions and background 
knowledge which color their analytical activities, e.g. the amount of expertise the analyst has 
within the domain of investigation.  This background knowledge can be essential in helping an 
analyst successfully complete a task in many cases.  For example, heuristic “short cuts” for filter-
ing out unnecessary information are often useful in problem solving.6. Such expert knowledge is 
often implicitly leveraged, without being explicitly recorded. On the other hand, recent research 
shows that providing background information can negatively impact analytical accuracy for nov-
ices.7 This finding underlines the need for analytical systems that work in concert with users to 
help understand complex data. Other unseen forces which influence an analyst come from a vari-
ety of cognitive biases.  These include anchoring and framing effects, in which an analyst’s in-
terpretation of data is influenced by what they have seen previously.  Similarly, recency bias and 
confirmation bias suggest that users are drawn to conclusions which support previously discov-
ered findings, especially when those findings are recent discoveries.  These forces suggest that 
the mental order and structure with which analysts organize their findings have significant im-
pact on their analytical behavior even if such information is not explicitly captured within a visu-
alization system. 

SEEING THE UNSEEN WITH CONTEXTUAL 
VISUALIZATION  
The threats to visualization validity identified above are not in and of themselves new concerns 
for the visualization community.  Indeed, some of the challenges (especially summarization and 
narrow fields of view) have been studied extensively, with well-known methods designed to 
counter them.  However, as we apply visual analytics techniques to increasingly complex da-
tasets and analytical tasks, many of these challenges are growing in significance while simulta-
neously becoming more difficult to address.   

In this section, we put forth the argument that this growing problem requires more attention.  
More specifically, we suggest that what is required is a set of contextual visualization methods 
designed to capture and display the information required to maintain awareness of these threats 
during visual analysis, and to help analysts mitigate their effects.  A variety of approaches will 
be required, in some cases leveraging existing approaches while in others relying on new innova-
tion to tackle emerging problems. 

Summarization  
Interactive visualization methods which follow Shneiderman's mantra— "Overview first, zoom 
and filter, then details-on-demand"8—aim to make visible this form of hidden information by 
providing exploratory tools that let users focus attention on more detailed representations of 
narrower subsets of data. For example, in Figure 1 the user might be able to click on each of the 
bars to view a more detailed breakdown of incidence rates within each top-level disease catego-
ry. These approaches are widespread and effective, and should be aggressively leveraged to help 
provide a richer context for high-level summaries.  However, as datasets increase in size and 
complexity, the discoverability of interesting details can be difficult.  Therefore, the development 
of computational methods which help guide users to discover areas of relevant or interesting 
detail will be important. 
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Narrow fields of view  
As described above, zooming is a widely used approach to providing users with a view of details 
that are otherwise hidden due to summarization.   Focus + context techniques are designed to 
contextualize the narrow fields of view produced by zooming with a view of data that is beyond 
the area of focus.  For example, mapping applications often use minimaps of large geographic 
regions to indicates where a zoomed map’s current narrow field of view is positioned. Other 
focus + context techniques, such as the volumetric visualization in Figure 2, embed the focus 
areas within a larger contextual object to help highlight specific areas of interest. 

 
Figure 2. A focus + context view of a molecular cavity of interest (green) within the context of the 
larger molecular surface. 

Narrow fields of view are also used to manage non-spatial dimensions. For example, consider a 
scientific visualization application in which a volume rendering transfer function applies in-
creased opacity to voxels within a given range of interest to mitigate issues with occlusion in 
volumetric data.9 In this form of visual query, where users can interactively explore different 
range as part of an analysis, advanced data selection widgets could improve the visibility of con-
text by providing visualizations of data values for the focused dimension throughout the entire 
range (e.g., scented widgets10). 

A common example of this approach would be time-series visualizations which contain over-
views of an entire time series to contextualize a detailed visualization of a narrow in time span. 
For instance, a stock-market visualization could help prevent misleading views of price trends 
over very short time-spans by showing contextually that the “short term trend” is actually just a 
small fluctuation within a more significant long-term change in prices.   

As datasets grow larger and more complex, the need to overcome limitations of summarization 
are making narrow fields-of-view an even more important tool for exposing the details of a da-
taset and the nuanced insights that those details inform.  However, the increasing complexity 
also makes it more difficult for users to maintain awareness of the larger context as they shift 
areas of focus.  We argue that this calls for more widespread use of focus + context methods, as 
well as the development of more advanced capabilities for data types where the larger context is 
harder to represent. 

Omitted dimensions 
Various techniques have been developed to facilitate navigation in high-dimensional information 
spaces. The most basic approach is to provide users with the ability to control which subset of 
variables are visualized at a given time by selecting from a list of available dimensions. To help 
users understand which subspaces of the data they have examined, recent work has extended the 
concept of scented widgets to include a visual representation of the combinations of dimensions 
that have already been visualized within in a given session.11 This can help users see which di-
mensions are available in a dataset, as well as information about which dimensions have not yet 
been explored.  However, these methods do not fully address the threats to validity issues out-
lined earlier in this paper. 
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Most critically, omitting dimensions from a visualization can hide issues such as selection bias 
introduced during filtering and zooming. Recent research has shown that the effects of selection 
bias in high dimensional visualization can be communicated to users by capturing a user’s explo-
ration history and visualizing differences in variable distributions across that history (Figure 
3).12.  Future innovation in this area, including capturing more complex analyses and integrating 
methods to correct for bias (e.g. post-stratification13) is necessary to make ad hoc exploratory 
visual analysis more robust 

 
Figure 3: A visual analytics system instrumented to detect selection bias during exploratory data 
selection.  The bread-crumb view in the callout shows increasing drift (lighter green bars) moving 
back from the current analytical focus (right) to the original cohort (left). 

External data  
Unobserved data is perhaps the most difficult to address of the challenges enumerated in this 
article, and perhaps as a consequence has not received as much attention from the visual analyt-
ics community.  Any algorithmic approaches must recognize that the missing variables or non-
representative samples at the root of this family of challenges cannot be known to the system.  
One potential direction to explore is the integration of structured reasoning approaches which 
encourage users to assess the quality and comprehensiveness of the underlying data sample as 
part of their interactive analysis workflow.  Another possibility is formalizing the use of external 
“reference” data sources when such information is available.  For example, an analysis of online 
activity which is aimed at understanding the general population could contextualize its findings 
using census data as a relatively complete profile of the broader population. 

Cognitive challenges  
Cognitive biases can have a great impact on visual analysis quality.  As with external data issues, 
structured reasoning techniques such as Analysis of Competing Hypotheses (ACH) have some 
promise as tools to help address some of these issues.  However, these approaches typically re-
quire users to be diligent in following a process designed to overcome known cognitive weak-
nesses.   

Recent research has begun to explore more automated approaches which track users’ interaction 
behavior within a visual analytics system and compute scores to assess levels of cognitive bias.14 
These sorts of automated approaches could be quite valuable in providing users a contextual 
knowledge of cognitive threats to their analysis results.  However, it remains a grand challenge 
to develop meaningful metrics which can reliably distinguish between flawed analytical behavior 
(e.g., a false conclusion due to confirmation bias) and effective sensemaking behavior which 
“connects the dots” across a set of truly related observations. Steps toward improving support for 
handling cognitive biases in visual analytics systems may include: (1) developing improved 
models of how cognitive biases manifest themselves within visual analytic activity, and (2) 
based on these models, providing recommendations for human analysis workflows or computa-
tional tools which may be able to avoid, detect, and overcome cognitive biases. 
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CONCLUSION 
One of the great promises of interactive visualizations is to provide opportunities for supporting 
evidence-based decision making. However, the threats to validity due to the complexity of very 
high-dimensional datasets and unseen cognitive factors create an environment with a high risk of 
producing misleading or entirely erroneous findings. To more effectively meet this promise, the 
visualization community must continue efforts to uncover these hidden threats to validity, and 
make them apparent to the user. Such contextualization methods will enable more detailed, nu-
anced, precise, and accurate insights into complex problems requiring sophisticated analysis.  If 
visual analytics technologies are to reach their full potential, this topic should be a key priority 
for future visual analytics research. 
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