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ABSTRACT When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The
folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular mol-
ecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects
of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs.
We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus
in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify
single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition
function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic
sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles
to converge on a stable 2D map of conformational space. We then compute the selective 20 hydroxyl acylation by primer exten-
sion (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to
visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that
reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the
on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and
in vivo SHAPE-MaP for human b-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a
comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indic-
ative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to
the stop codon.
INTRODUCTION
Ribonucleic acid (RNA) 3D structures are the result of
remarkably complex interaction networks that together
create emergent biological functions (1–4). Although crys-
tal structures reveal these networks with atomic detail, these
remain static snapshot models of the conformations existing
in the cellular environment (5). RNAs, particularly highly
structured RNAs such as ribosomal RNA, exist in multiple
conformations, many of which are likely to affect their func-
tion(s) (6–8). Thus, when describing RNA structure, it is
more accurate to discuss an ensemble of conformations
instead of a single structure (7,9–11). However, significant
biophysical challenges remain, whether at the secondary
or tertiary structural level, including visualization of the
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ensemble of RNA conformations and identification of
essential functional elements within the entire ensemble
(9,12–14).

The challenge of visualizing an RNA secondary structure
ensemble is easily illustrated by the Vibrio vulnificus adeno-
sine deaminase (add) adenine riboswitch (Fig. 1) (15–18).
Typically RNA is represented as a single structure, but,
for the riboswitch, at least two structures are required for func-
tion: the on-conformation and the off-conformation (Fig. 1A)
(16,18,19). These two structures interchange, with the off-
conformation favored without the adenine ligand, and the
on-conformation stabilized by binding adenine (17,18,20).
Thus, in solution the RNA exists as an ensemble of conforma-
tions that interchange (1,8,10,21–23). In visualizing such an
ensemble, two salient aspects should be highlighted to under-
stand function: 1) the structural similarity and difference
between the two conformations and 2) the relative abundance
of each conformation in the ensemble.

mailto:alain@unc.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2017.05.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.bpj.2017.05.031


FIGURE 1 The conformational states of the

V. vulnificus add adenine riboswitch. (A) The

accepted structures for the bound and unbound

states of the riboswitch are determined by crystal-

lography and NMR (54). The unbound state re-

presses translation, and the bound state activates

translation (20,54). (B) The map of conformational

space explores five possible structure clusters for

the riboswitch. The representative structure is

the cluster medoid structure. The orange cluster

represents the translation off-conformation, and

the purple cluster represents the translation on-

conformation, as confirmed by crystallography

andNMR (90). To see this figure in color, go online.

RNA Structural Ensemble Visualization
Defining structural similarity requires a representation that
captures biologically important structural features of the
RNA to facilitate clustering of highly similar conformations.
From these clusters, it is then possible to determine the rela-
tive abundance of the conformations, which reflects their
relative thermodynamic weights in the Boltzmann ensemble.
We therefore aim to create a visualization based on a sam-
pling of conformational space like the one illustrated for
the add riboswitch (Fig. 1 B), which was stochastically
sampled from the Boltzmann ensemble. In Fig. 1 B, we illus-
trate a map of conformational space, in which each square
represents a cluster of similar conformations based on a
nested feature vector that we define below. This representa-
tion is particularly interesting as it reveals several aspects
of the add riboswitch conformational ensemble that are not
apparent when considering only two structures (Fig. 1 A).
First, this visualization suggests that there are more than
two classes of conformations in the add riboswitch confor-
mational ensemble. Second, the on- and off-conformational
change is conveniently captured along dimension 1. The
methods we describe below provide a robust approach for
identifying specific dimensions that capture biologically
informative structural differences, such as those in Fig. 1 B.
In Fig. 1 B, we purposely did not indicate the relative
abundance of conformations in each conformational cluster;
each square is equal in size. The relative weight of these
clusters depends on the underlying thermodynamic parame-
ters of the energy model. Given a nearest-neighbor energy
model, it is now computationally efficient to rapidly sample
the Boltzmann suboptimal ensemble (24–27). Furthermore,
the nearest neighbor model can be extended to empirically
include experimental structure probing data, particularly se-
lective 20 hydroxyl acylation by primer extension (SHAPE)
data (28,29). Inclusion of SHAPE data is relevant because
the RNA structure is readily probed under different experi-
mental conditions. For example, the add riboswitch can be
probed with and without the ligand that causes a structural
rearrangement (15,30,31). As we will show below, the visu-
alization proposed in Fig. 1 B accurately captures this bio-
logically important rearrangement when combined with
SHAPE-informed structure probing.

Although visualizing riboswitch ensemble conformations
is one important goal of our work, the main motivation for
improving the ability to visualize and interpret RNA confor-
mational ensembles stems from our studies of messenger
RNA (mRNA) folding in vitro versus in vivo. Quantitative
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comparison of these two conditions effectively enables us to
deconvolute the effect of the cellular environment on mRNA
folding. The structural ensembles of these long and flexible
RNAs tend to be far more complex than the structural ensem-
bles of riboswitches. As such, we require tools that enable
‘‘sorting the forest from the trees’’ to understand these large
and complex molecules. We present here an experimental
high-resolution comparison of SHAPE data for the human
b-actin mRNA that reveals specific regions in which the
RNA folds differently in vitro versus in vivo. We show how
these visualizations enable interpretation of the complex re-
arrangements of the mRNA conformational ensemble that
occur in the cell, thereby obtaining meaningful biophysical
and biological insight into the specific structure function re-
lationships of the specific messenger. Together, these novel
data and methods, to our knowledge, establish a robust
approach for interpreting chemical and enzymatic probing
data in the context of conformational ensembles.
MATERIALS AND METHODS

Generating structures for the map of
conformational space

Our strategy for establishing a conformational map of an RNA ensemble is

illustrated in Fig. 2. Beginningwith the RNA sequence (Fig. 2A), we compute

its partition function (probability of basepairing (32–35)) and the partition

functions of all AtoU, UtoA, CtoG, and GtoC single point mutant sequences

(Fig. 2 B). These point mutations are experimentally determined to be maxi-

mally disruptive of structure (32). The purpose of stochastic sampling of mul-
292 Biophysical Journal 113, 290–301, July 25, 2017
tiple single point mutant sequences is to generate a more diverse ensemble of

structures from which to build a visualization space. This strategy converges

faster and generates a more diverse ensemble than traditional stochastic sam-

pling of a single sequence, as can be seen in Fig. S7. The sum over the rows in

the partition function is the basepairing probability,P, for each nucleotidewith

every other nucleotide, xij (Eq. 1). Our goal is to generate an ensemble of

diverse possible conformations and establish a representative 2D map for

visualization. Thus, single point mutants with the highest ensemble Shannon

entropy (H), as defined by Eq. 1, are selected for further analysis. This defini-

tion of Shannon entropy has previously been used to interpret RNA structure

(36–38), and computes the entropy based on the 1D basepairing probability

vector. Alternative definitions of Shannon entropy could potentially be used

to compute the Shannon entropy from the full 2D basepairing probability

matrix, the thermodynamic structural entropy, or algorithm computation

(33,34,37). In the first pass, we eliminate the lowest 25%Shannon entropymu-

tants (Fig. 2C) (36–38). Ina secondfilter,weperformhierarchical clustering of

the basepairing probabilityP(xi) vectors basedon their Euclidean distance (39)

to identify the most divergent partition functions (Fig. 2 D). We then perform

Boltzmann stochastic sampling on the two most divergent partition functions

(Fig. 2 E), and create nestedness feature vectors from the sampled structures

(Fig. 2 F; Fig. S1), to generate a map of conformational space using metric

multidimensional scaling (40) (Fig. 2H). We iteratively add additional Boltz-

mann ensemble samples of divergent single point mutant sequences until the

map of conformational space converges (Fig. 2 G), as follows:

Hi ¼ �
XJ

j¼ 1

P
�
xi;j

�
log10P

�
xi;j

�
: (1)

Projection of the map of conformational space

Our projection is based on the representation proposed in the RNAshapes

abstraction that captures whether a stem or stack element exists, ignoring
FIGURE 2 Building the map of conformational

space. The map explores the possible structural

space for an RNA sequence and its single point mu-

tants. (A)A singlepointmutantwas created for every

position in the RNA. We used only mutations that

were expected to lead to the largest changes in struc-

ture based on experimental observations from the

mutate-and-map experiments (AtoU, UtoA, CtoG,

and GtoC) (32,91). (B) The partition function was

generated for thewild-type and single point mutants

using established structure prediction methods

(22,49,50,92). (C) The RNAs were ranked by Shan-

non entropy, and the top 75% were retained to filter

for individual RNAs with more diverse ensembles

(36–38). (D) We collapsed the partition function

for each of the remaining RNAs into their basepair-

ing probabilities, and performed hierarchical clus-

tering on the probabilities (39). This clustering

selects the most diverse RNA subsets. (E) We

selected the most distant RNA and sampled 1000

structures according to their Boltzmann probability

(5). (F)Weuseddata abstraction to identify thenum-

ber of unique structure clusters. This data abstraction

is further described in Fig. S1. (G)We repeated steps

(E) and (F) until the number of structure clusters

converged. (H) The structure clusters are projected

into 2D space using metric MDS. By minimizing

the stress function for the Euclidean distancematrix,

MDSoptimizes the positioning of the structure clus-

ters (40,41). To see this figure in color, go online.
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the size of that element (35). Biologically, significant variation is observed

in stem length but stack elements are generally more conserved (33–35).

Thus, we expect that basing our projections on this distance metric will cap-

ture important structure/function features in the ensembles. Our representa-

tion counts the number of inner loops and stacks and then positions that

count according to the location of the outermost stack in the nestedness

feature vector (Fig. S1). Stems and stacks with fewer than three basepairs

can be optionally ignored to simplify particularly complex ensemble visu-

alizations. We determine the nestedness representation for every structure

in the map of conformational space and collapse the structures into clusters

based on unique nestedness representations (Fig. 2 F). Metric multidimen-

sional scaling (MDS) projects the structure clusters into 2D space by

finding the positioning of points in 2D space that best recapitulates the orig-

inal Euclidean distances calculated from the structure cluster representa-

tions (Fig. 2 H) (40,41). MDS calculates the Euclidean distance matrix

for n-dimensional data, dij. Initial positions for the data points, x, are set

in 2D space, i and j. The initial positions are determined from projection

onto the first two eigenvectors from eigen decomposition on the distance

matrix. Based on this configuration, MDS evaluates the stress function in

Eq. 2 (40,41). The data points are reconfigured in the direction of steepest

descent. This process is repeated to minimize the stress function (40,41).

Minimization of the stress function finds the configuration with the smallest

residual sum of squares when compared with the original distance matrix

(40,41). As a result, MDS yields a 2D embedding of the data points

(used for visualization) that optimally reflects the pairwise distances be-

tween data points as computed within the original n-dimensional data, as

follows:

Stress ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
ij

�
dij � kxi � xj k

�2
P

d2ij

vuut : (2)

Projection of the wild-type RNA

For the wild-type RNA, we recommend generating 1000 structures using

Boltzmann-weighted stochastic sampling (42–45) (Fig. S2 A). SHAPE

data can be included to direct the ensemble prediction (28,46). Each struc-

ture from the wild-type ensemble was converted into our nestedness rep-

resentation. We then compute the frequency of structures that belong to

each structure cluster (Fig. S2 B), and these frequencies are then scaled

as relative diameters for each bubble in the resulting plot (Fig. S2 C). Bub-

bles are colored according to their 2D distances, where groups of similar

clusters are closer on the viridis color scale in matplotlib (47). If any

sampled structure in this plot does not match existing clusters in the

map, the structure is added to the closest cluster based on Euclidean dis-

tance. As described here, the wild-type RNA is projected onto the map of

conformational space. For comparison between mutants or between the

same RNA in different environments, the same map of conformational

space is used (as opposed to recomputing a new map for every compari-

son). This results in a stable space for projecting new ensembles of inter-

est. In the interactive visualization output for EnsembleRNA, we include a

measure of diversity for each structure cluster to allow the user to get a

sense of the similarity of the structures clustered. This measure compares

the frequency of the most common structure (maximum cluster frequency)

and the average Jaccard similarity (48) between the binary representations

of structures (minimum cluster correlation). Thus, if every structure in a

cluster is unique, the value is 1; otherwise diversity is the fraction of

nonunique structures.
EnsembleRNA package and webserver

A Python package (https://www.python.org/), EnsembleRNA, was created

for the visualization of RNA structural ensembles. The package produces
bubble charts for the map of conformational space and the wild-type

RNA, and allows for comparison between structural ensembles. The

package is available at http://ribosnitch.bio.unc.edu/software. Supporting

Materials and Methods contains additional information on usage, trouble-

shooting EnsembleRNA, and tutorials.
In vitro SHAPE treatment

SHAPE-MaP experiments were performed in vitro (37). We obtained a

clone of b-actin mRNA (SC319328; OriGene, Rockville, MD) and directly

PCR-amplified the coding sequence with a 50 primer containing the T7 pro-

moter for in vitro transcription (Q5 Site-Directed Mutagenesis Kit and T7

RNA Polymerase from New England BioLabs, Ipswich, MA). To remove

DNA after transcription, we treated the reaction with TURBO DNase for

15 min at 37�C (ThermoFisher Scientific, Waltham, MA). Standard bead

cleanup was performed between each step (Ampure XP; Beckman Coulter,

Brea, CA). The transcribed RNA was folded at 37�C in buffer containing

100 mM Na-HEPES, pH 8.0, 100 mM NaCl, and 10 mM MgCl2. One mg

of RNA was treated for 5 min with either 10% dimethyl sulfoxide

(DMSO) or DMSO containing the RNA modifying agent 1-methyl-7-nitro-

isatoic anhydride (1M7) at a final concentration of 10 mM.
In vivo SHAPE treatment

We performed in vivo SHAPE-MaP experiments for b-actin in the 1000

Genome Cell Lines GM07037 and GM12003 (37), obtained from the

NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical

Research (https://www.coriell.org/). Approximately 50,000,000 cells were

collected by centrifugation, resuspended in 1 mL of folding buffer (as in

in vitro SHAPE protocol) supplemented with 400 U murine RNase inhibi-

tor, and sonicated three times at 10% power for 10 s (Sonic Dismembrator

Model 500; Thermo Fisher Scientific). These samples were incubated at

37�C for 10 min, after which either DMSO (10% final concentration) or

500 mM 1M7 in DMSO (final concentration 30 mM) was added for

5 min with three separate additions. RNAwas isolated with Trizol reagent

(ThermoFisher Scientific), followed by treatment with TURBO DNase and

removal of the majority of ribosomal RNA (RiboMinus Eukaryote System

v2; Life Technologies, Carlsbad, CA).
SHAPE data collection and analysis

For all samples, we performed reverse transcription with the specialized

reverse transcription conditions for SHAPE-MaP and random nonamer

primers (37). The transcription reactionswere purified via AmpureXP beads

(Beckman Coulter) or G50 columns (GE Healthcare Life Sciences, Little

Chalfont, Buckinghamshire, UK), and dsDNA was made by second strand

synthesis (NEBNextmRNASecondStrandSynthesisModule;NewEngland

BioLabs). To prepare libraries, we used theNextera orNexteraXT kits (Nex-

tera DNASample PreparationKit, NexteraXTDNASample PreparationKit

and Index Kits; Illumina, San Diego, CA). Sequencing for the in vitro sam-

ples was performed on the HiSeq 2500 (Illumina) as paired-end, 50-read

multiplex runs. Sequencing for the in vivo samples was performed on

the HiSeq 2500 as paired-end, 100-read multiplex runs. Analysis was per-

formed with the ShapeMapper pipeline (37) using either b-actin mRNA

(NM_001101) to align sequences derived from the in vitro samples or the

entire genome (hg38) to align sequences derived from the in vivo alignment.

The b-actin data are in the file SNRNASM (see Data S1). SHAPE traces for

thewild-typeV. vulnificus add riboswitchmutate-and-map experimentswere

obtained from the publicly available RNAMappingDatabase (22,49,50). To

normalize the SHAPE-MaP data, scaled background reactivities were sub-

tracted from the plus reagent reaction reactivities. A multiplier was used to

fit the resulting distribution of values to the distribution of values for the

normalized reactivities of a reference mRNA.
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b-actin RNA structural modeling

An RNA/protein complex was generated from a starting model of two DNA

strands bound to the KH34 protein (37). A custom Python script was used to

convert the DNA strands to the appropriate RNA nucleotide sequence. The

resulting RNA/protein complex was equilibrated by discrete molecular dy-

namics (DMD) simulations (51–53) to accommodate the zipcode binding

regions of the RNA strands. The remaining regions of the RNA strands

were modeled using coarse-grained DMD simulations (42) in which each

nucleotide was represented as three pseudo-atoms corresponding to the

phosphate backbone, sugar group, and nucleobase. With the replica ex-

change approach, we efficiently sampled RNA conformations by utilizing

replicas of the same RNA system in parallel at different temperatures. Rep-

licas were allowed to exchange simulation temperatures periodically based

on a Monte Carlo algorithm. The replica exchange DMD simulations were

run for 50 ns with replica temperatures of 0.200, 0.225, 0.250, 0.270, 0.300,

0.333, 0.367, and 0.400 with units kcal/(mol*kB). Free energy bonuses

were incorporated between nucleotides to model the in vivo basepairing in-

teractions. To select the final RNA model, we used a hierarchical clustering

analysis based on the pairwise root mean square deviation of the phosphates

and the potential energy as determined by the DMD force field. The coarse-

grained RNA model was reconstructed to an all-atom model to combine

with the KH34 protein system. We then equilibrated the entire RNA/protein

complex using all-atom DMD simulations at a temperature of 0.4 kcal/

(mol*kB) and included static constraints on the protein and harmonic con-

straints on the zipcode binding regions of the RNA strand.
In vitro model

We incorporated the in vitro secondary structure as constraints in coarse-

grained replica exchange DMD simulations, using the same settings as

those in the in vivo RNA system. We then performed an root mean square

deviation-based clustering analysis to determine the centroid and recon-

structed an all-atom model at a temperature of 0.4 kcal/(mol*kB).
RNA dynamics

The dynamics of the 20 hydroxyl groups of the in vitro and in vivo RNA

strands were calculated using the root mean square fluctuation (RMSF)

with the Wordom software package (http://wordom.sourceforge.net/)

(43). RMSF calculations were performed on three 100-ns DMD simulations

at a temperature of 0.4 kcal/(mol*kB) for both RNA systems. The in vivo

system included static constraints on the protein and harmonic constraints

on the zipcode binding protein-interacting regions of the RNA. We calcu-

lated the mean using 3-nucleotide windows and SD of the RMSF based

on the three DMD simulations for each system.
RESULTS

Generating a robust 2D representation of an RNA
structural ensemble

Our first goal in creating a visualization of a structural
ensemble was to establish a robust and consistent 2D repre-
sentation of the conformational space of RNA. Tradition-
ally, principal component analysis is used to identify two
Eigenvectors for projection (24,25). One challenge with
this approach is that the first three Eigenvectors often fail
to capture enough variance to detect major structural ele-
ments (44). If a conformation change is predicted, this lim-
itation of principal component analysis makes it difficult to
understand the relative differences in the ensemble. A sec-
294 Biophysical Journal 113, 290–301, July 25, 2017
ond challenge is determining which structural features to
highlight in the representation to capture important biolog-
ical aspects of the ensemble. Selecting features to highlight
requires picking a specific structural distance representa-
tion, which can affect the interpretation as much as which
Eigenvectors are used for projection. We propose an
approach that provides a stable and robust visualization
while also capturing important biological features (e.g.,
the on- and off-conformation of the add riboswitch in
Fig. 1 B).

Our approach is summarized in Figs. 2 and S2. We begin
by computing the partition function of the wild-type RNA
sequence and all single point mutants. From these partition
functions, we select the RNAs that are maximally different,
as determined by Shannon entropy and hierarchical clus-
tering on basepairing probability (36,39). From these parti-
tion functions, we sample the Boltzmann suboptimal
ensemble and use these structures as the basis to build
our visualization (25). This strategy effectively allows us
to more comprehensively sample the suboptimal ensemble
and the strategy does not depend on the approach used to
compute the partition function. The visualization creates
a stable space for the comparison of structural ensembles
using mutations to explore the possible conformations
that an RNA may take (Fig. 1 B). Data abstraction iden-
tifies clusters of similar structures that likely have similar
function. This cluster representation reduces the map
size, thereby creating a more accurate and interpretable
visualization of secondary structure. Projecting the struc-
ture clusters into two dimensions using metric MDS opti-
mizes their distances (40,41). This approach enables easy
interpretation of the visualization, in which clusters that
are farther apart are more different. We can project the
RNA ensemble of interest onto this space by varying the
size of cluster bubbles based on the number of structures
that belong to that cluster (Fig. 1 B). Experimental struc-
ture probing data can be included to guide the ensemble
prediction (45). This method is further described in the
Materials and Methods.
Detecting RNA structure change induced by
ligand binding

The add riboswitch is found in the 50UTR of an mRNA that
codes for adenosine deaminase (20,54). This riboswitch
forms two distinct conformations that control translation
of the adjacent coding region (20,54). The adenine-unbound
conformation represses translation, and the adenine-bound
conformation activates translation. Fig. 1 A shows the
accepted secondary structures for the unbound and bound
states as determined by crystallography and NMR (54).
These secondary structures represent only two of several
possible conformations that the riboswitch may adopt in
the cell (28,46). Indeed, the map of conformational space
produced by our visualization explores a total of five

http://wordom.sourceforge.net/
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possible structure clusters including the two accepted con-
formations (Fig. 1 B). This visualization produces a separa-
tion in 2D space between conformations that can bind
adenine and activate translation and conformations that
cannot bind adenine.

The structural difference induced by ligand binding for the
add riboswitch is particularly well suited for the application
of SHAPE data.Without experimental data to guide structure
prediction algorithms, the accepted bound conformation
dominates (Fig. 3 A), and differences in structure that result
from changes in environment cannot be discerned. However,
including SHAPEdata in the ensemble prediction algorithms
reveals differences in the add riboswitch structure with and
without ligand (Fig. 3, B and C). In each ensemble, the
respective structure observed in crystallography and NMR
dominates. Thus, our visualization approach combined
with SHAPE-directed structural modeling captures key
structural features of the ensemble (20,54).
Observing regional structure differences in vitro
and in vivo

b-actin is a cytoskeletal protein involved in cell motility and
structure (15). The advent of high throughput structure prob-
ing methods such as SHAPE-MaP has only recently allowed
us to collect information on larger RNAs such as the �2-kb
b-actinmRNA (37). Structure probing data are collected for
RNA in the presence of cellular components, e.g., RNA-
binding proteins (in vivo), and for free RNA (in vitro)
(55). Thus, it is possible to detect structural differences in
long mRNAs caused by differences in environments, such
as the presence of ribosomes or RNA-binding proteins in
the cell (56,57). Therefore, we performed SHAPE-MaP
structure probing experiments on the b-actinmRNA present
in in vitro and in vivo environments (Fig. 4).
Because we are specifically interested in differences be-
tween the two environments (in vivo and in vitro), we
compute the windowed SHAPE correlation coefficient
between the two data sets and plot this correlation in
Fig. 4 A for a range of window sizes (40–140 nucleotides).
Overall, we observe high correlation between the two data
sets for a majority of the mRNA’s span, with a mean corre-
lation coefficient of 0.88. This result can be seen clearly in
Fig. S3, in which we plot raw data for a highly similar win-
dow in the coding region of the gene. We begin our struc-
tural analysis by performing SHAPE-directed Boltzmann
stochastic sampling of nucleotides 200–400, which we iden-
tified as having high in vitro to in vivo correlation (Fig. S3).
We expect to observe only small changes in the stochastic
sampling because the SHAPE data in this region are highly
similar. As expected, the visualization confirmed only
small differences, but it identified a remarkably complex
ensemble with 24 structural clusters (Fig. S4). This result
agrees with the high median SHAPE data (Fig. 4, B
and C) observed for this region; high median SHAPE
is correlated with higher ensemble entropy, i.e., multiple
alternative conformations (37).

The region with the lowest correlation is at the 30 end of
the mRNA. The in vitro-probed mRNA was transcribed in
the absence of a polyA polymerase, therefore it was not pol-
yadenylated, which likely explains the differences near the
30 end because the in vivo mRNA is most likely polyadeny-
lated (and 50-capped). The region of difference we chose to
further characterize structurally occurs 30 of the stop codon.
This region in the mRNA contains functional elements
known as the Zipcode Protein Binding Protein Sites
(ZPBS1 and ZPBS2). Binding of the zipcode binding pro-
tein (ZBP1) mediates mRNA localization and translation,
hence the name of the protein (58,59). We used our
ensemble visualization approach to characterize the in vivo
FIGURE 3 Visualization of bound and unbound

states of the V. vulnificus add adenine riboswitch.

(A) Projection of the predicted wild-type ensemble

without SHAPE data favors the experimentally deter-

mined on-conformation (left). However, alternative

conformations are still present (right). (B) When

the ensemble generation is guided by SHAPE exper-

iments conducted without ligand, off-conformations

are favored in the projection (left). Particularly, the

experimentally confirmed off-structure is the most

populated conformation. (C) When SHAPE data are

collected in the presence of ligand, the experimen-

tally confirmed on-conformation (right) is preferred

in the projection (left). Both SHAPE data sets (with

and without ligand) are publicly available in the

RNA Mapping Database (32,48,91). To see this

figure in color, go online.
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FIGURE 4 Comparison of in vitro and in vivo

structure for the human b-actin mRNA. (A) We

calculated the Pearson correlation in windows be-

tween the SHAPE reactivities collected in vitro

and in vivo for the b-actin mRNA. For each step

of the trapezoid from bottom to top, the window

size increases by five nucleotides from 40 to 140.

High correlation (white) corresponds to areas that

are similar in structure and low correlation (blue)

corresponds to areas that are different in structure.

The distances from the median SHAPE value for

(B) in vitro and (C) in vivo b-actin were calculated

in 50-nucleotide windows. Segments with reactiv-

ities above the median are less structured than seg-

ments with reactivities below the median. The gray

panel highlights a region in which the SHAPE

reactivity differs between in vitro and in vivo.

(D) This difference is seen in the SHAPE traces

for in vitro (top) and in vivo trace (bottom).

Structure probing was performed using the high

throughput SHAPE-MaP technique. Red nucleo-

tides correspond to high SHAPE reactivity, yellow

corresponds to medium reactivity, and black corre-

sponds to low reactivity. The ZBP1-binding region

(bright blue) and two zipcode binding protein-

interacting sites (purple) are labeled above the

windowed correlation and at the bottom of the

SHAPE traces. The overlay for the SHAPE traces

is in Fig. S5. To see this figure in color, go online.
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conformational rearrangements occurring in ZPBS1 and
ZBPS2 within the ZBP1 binding region of the mRNA and
to understand these rearrangements in the context of this re-
gion’s function. The 54-nucleotide region we model below
was previously identified as necessary and sufficient for
localization of b-actin mRNA to the cell periphery
(58,59). We therefore decided to specifically focus on the
ensemble structure of this region.

Boltzmann stochastic sampling for the ZBP1 binding
regions in vivo visualized using our approach revealed a
shift in the structural ensemble away from the preferred
in vitro conformation toward an alternative conformation
(Fig. 5, A and B). Nonetheless, the dominant conformation
in vitro (Fig. 5 A) is still significantly populated in vivo
(Fig. 5 B). Thus, our visualization suggests a more complex
ensemble of conformations in vivo. To further understand
the structural context of the shift in ensemble, we visualized
the secondary structure medoid for each of the largest struc-
ture clusters in vivo and in vitro. Although in both confor-
mations the Zipcode Binding Protein Sites (ZBPS) are
296 Biophysical Journal 113, 290–301, July 25, 2017
unpaired, in vivo the dominant confirmation shows ZBPS1
and ZBPS2 in a contiguous unpaired region, consistent
with the larger in vivo SHAPE values. Importantly, the
SHAPE reagent is not a footprinting reagent and is only
minimally affected by nucleotide accessibility (60,61).
Thus, it is not surprising that we observed higher SHAPE
values surrounding the ZBPS. In fact, the ZBP1 is divalent,
and it has been shown to simultaneously bind the two ZBPS
motifs separated by a linker portion of the RNA, although
the precise occupancy of the second site is not known
(37,62). Nonetheless, binding to this region is essential for
correct b-actin mRNA localization and translational control
(63,64). To accommodate the ZBP1 protein, the RNA likely
has to become more open and flexible, consistent with the
higher SHAPE data we observed.

To further understand the in vivo structural rearrange-
ment, we performed molecular simulations of apo and
bound mRNA conformations (Fig. 5, C and D). By using
the secondary structure as initial constraints, we aimed to
estimate the root mean square fluctuations (RMSFs) of the



FIGURE 5 Ensemble visualization for in vitro

and in vivo human b-actin mRNA. Generation of

structures for the b-actin mRNA ensemble was

guided by the in vitro and in vivo SHAPE data.

We compared the (A) in vitro and (B) in vivo en-

sembles for the region where SHAPE reactivities

were expected to be different. The ensemble visu-

alization reveals a large shift away from the domi-

nant structure in vitro toward a second structure

in vivo. We visualized the second structure for

the medoid in each of the largest structure clusters.

These nucleotides form different structures in vitro

and in vivo. The region that differs includes the

zipcode region with the two ZBP1 binding sites

(purple). (C) The 3D structure for b-actin in vitro

was modeled using molecular dynamics simula-

tions without ZBP1. (D) The 3D structure for

b-actin in vivo was modeled with the ZBP1 (in

gray). For both 3D models, the ZBP1 binding re-

gions are highlighted in purple. Red nucleotides

correspond to high SHAPE reactivity, yellow

correspond to medium reactivity, and black corre-

sponds to low reactivity in (A–D) and (E). Compar-

ison of SHAPE reactivity (green) and normalized

RMSF (orange) for b-actin in vitro largely follow

the same pattern. (F) Comparison of SHAPE reac-

tivity and RMSF for b-actin in vivo also largely

follow the same pattern. The SHAPE reactivities

and RMSF values are averaged across a 3-nucleo-

tide moving window. The RMSF is calculated from

the 3D structural models. ZPB1 binding sites for

(E) and (F) are boxed in purple. Fig. S6 includes

further comparisons between in vitro and in vivo

SHAPE reactivity and RMSF. To see this figure

in color, go online.
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RNA backbone. We show these data for the apo and bound
simulations in Fig. 5, E and F, overlaid with the in vitro
and in vivo SHAPE data, respectively. We observed qualita-
tive agreements between the experimental SHAPE data
and the simulations, suggesting these molecular models
captured overall aspects of the conformational ensemble.
One important aspect of these comparisons, especially in
the case of the in vivo data, is that the SHAPE data are an
ensemble average over all of the b-actin mRNA molecules
in the cell. Because ZBP1 binding represses translation,
some message molecules are likely not bound by ZBP1,
a situation that may explain why a shift to multiple
Biophysical Journal 113, 290–301, July 25, 2017 297
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conformations is observed in vivo as opposed to observing
only the bound conformation. Nonetheless, these data
demonstrate the value of visualizing the structural ensemble
to explain structure/function relationships in an mRNA.
DISCUSSION

RNA structure is the key component of cellular function in
highly specific instances; the ribosome’s unique catalytic
core is a prime example of the role of a specific RNA struc-
ture in performing protein synthesis (65–69). Generally,
however, the functions of structures in messenger RNAs
are poorly understood, except for a few cases, such as the
iron responsive element (22,70) and the histone stem loop
(71–73), in which single structures are essential for func-
tion. Other than ribosomal RNA, no RNA larger than
1 kb, including mRNAs, is known to fold into a unique,
well-defined conformation (65,67–69,74,75). Still, although
large RNAs do not adopt single conformations, specific re-
gions do fold into complex 3D structures. One example is
riboswitches in bacteria (Fig. 1). Although riboswitches
are considered to be structured (i.e., they can be crystal-
lized), riboswitches adopt multiple conformations that
lead to different functions (7). Because RNAs such as ribos-
witches have evolved to form multiple conformations to
function, it is essential to consider the suboptimal ensemble
when considering structure in messenger RNAs (7).

Our approach to visualizing the suboptimal ensemble is
designed to resolve some of the longstanding problems
with obtaining a stable projection that allows comparisons
of ensembles. A priori, this visualization approach requires
sampling the entire suboptimal space to identify good
principal components. For any biologically relevant RNA,
such sampling rapidly becomes computationally intractable
because the number of suboptimal conformations increases
exponentially with length (76,77). Thus, our approach is
empirical (Fig. 2) and relies on rapid sampling of subopti-
mal ensembles for single point mutants of the RNA (78).
Combined with multidimensional scaling and a shape-based
abstraction (25,76), our maps have the desired properties of
stability and they enable comparison of different ensembles.
The stability of our visualization and the complexity of un-
structured regions are best illustrated in Figs. S3 and S4.

The main biological motivation for our approach is the
need to visualize changes in the ensemble caused by envi-
ronment. Our results on the V. vulnificus add riboswitch
leverage the empirical relationship between SHAPE reac-
tivity and the free energy of folding to recapitulate the apo
and bound RNA ensembles (Fig. 3). Importantly, the goal
of these visualizations is to facilitate the understanding of
a complex process by approximating the specific abundance
of each conformation in an ensemble. Moreover, we aim to
extract biological insight from the ensemble calculation; for
the V. vulnificus add riboswitch, our visualization of the
ensemble model recapitulates the understanding of this sys-
298 Biophysical Journal 113, 290–301, July 25, 2017
tem in an easily interpreted diagram. The riboswitch, a
smaller fragment of a larger bacterial mRNA, is a relatively
straightforward example. This is not the case for complex
full-length eukaryotic mRNAs that tend to be much more
highly regulated and structurally sensitive to their environ-
ments (38,79). Whether prokaryotic or eukaryotic, it is clear
that mRNAs are in integral part of cellular regulation (38).

Our analyses of a full-length human mRNA in vivo and
in vitro revealed some of the complexities associated with
interpreting structures in large RNAs. We observed, in
both conditions, regions of high (unstructured) and low
(structured) median SHAPE (56), results consistent with
locally structured regions. Overall, the high similarity be-
tween in vivo and in vitro SHAPE data suggests that the
mRNA is not globally affected by its environment, but,
instead, specific regions are affected by endogenous mole-
cule binding. Local structure is the case for the ZPB1 bind-
ing region in the 30 UTR of b-actin, which we visualized
using our ensemble approach (Fig. 5).

A significant result of this analysis is the median
windowed SHAPE, which overall appeared higher in vivo
relative to in vitro for the ZPB1-binding region. This result
may seem counterintuitive, as the ZBP1 would be expected
to protect the RNA from the 1M7 reagent. Although protein
binding is detectable by SHAPE comparisons in vitro to
in vivo (56,80), SHAPE chemistry is not a traditional foot-
printing technique (44,81–83). Thus, it is likely that the ma-
jority of differences in the SHAPE reactivity in this region
are due to a conformational rearrangement due to protein
binding, and not the footprint of the protein.

Our model (Fig. 5, A and B) successfully reports a shift in
the ensemble, but the model does not suggest a totally domi-
nant alternative in vivo conformation. This restriction is in
contrast to the add riboswitch, in which ligand excess shifts
the ensemble to almost completely the on-conformation
(Fig. 3 C). It is important not to overinterpret the relative
ratios of the two dominant conformations proposed for the
ZBP1-binding region modeled in Fig. 5 B. However, the
model is consistent with our expectation of a mixed popula-
tion of ZBP1-bound and unbound b-actin mRNA. Also, the
fact that the ZBP1 has two binding sites and these sites are
not always simultaneously occupied (37,84) is an additional
aspect that our model cannot currently describe. Thus, our
visualization accurately represents the likely state of the
population of b-actin mRNAs in the cell, but still requires
biological knowledge to be fully interpretable.

We performed constrained molecular dynamics simula-
tions of the two proposed structural models of b-actin
mRNA to determine if the models agreed qualitatively
with the SHAPE data. Because SHAPE chemistry measures
backbone flexibility (81,85), we report RMSFs for both
models in Fig. 5, E and F. For the ZBP1-binding region be-
tween ZBPS1 and ZBPS1, the agreement between the simu-
lation and SHAPE data is better for the in vitro model
compared to the in vivo simulation. For the in vivo model,
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we constrained both ZBPS1 and ZBPS2 to the binding
pockets, which explains the low flexibility of ZBPS1 and
ZBPS2. The higher SHAPE data for these two binding sites
in vivo are consistent with a significant subset of mRNAs
being unbound, which agrees with our ensemble model
that suggested a further opening of the structure.

In summary, we have developed a computationally based
visualization approach that faithfully represents ensemble
mRNA populations and the effects of environment on the
ensembles. The b-actin mRNA and the V. vulnificus add ri-
boswitch are two well-characterized systems in which
ensemble visualization improves the interpretation of envi-
ronmentally imposed structural differences. By releasing a
software package to create these visualizations easily, we
encourage the RNA folding community to simulate more
than just minimum free energy structures and to explore
the suboptimal ensemble for all mRNAs existing in a cell.
It is not clear whether suboptimal alternative conformations
are a necessary component of RNA function in the cell or a
by-product of the rules that govern RNA folding (28,86–89).
Regardless, structure ensembles are a thermodynamic real-
ity of RNAs and are accommodated as a feature of their
function.
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