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Fig. 1. The anomaly detection result of the Agavue dataset using ET3 system. Two anomalous pattern were identified: (1) tool-tips
failing to show when users interact with toolbars; (2) users encountering an error after requesting data binding.

Abstract— Anomaly detection is a common analytical task that aims to identify rare cases that differ from the typical cases that make
up the majority of a dataset. Anomaly detection takes many forms, but is frequently applied to the analysis of event sequence data in
addressing real-world problems such as error diagnosis, fraud detection, and vital sign monitoring. With general event sequence data,
however, the task of anomaly detection can be complex because the sequential and temporal nature of such data results in diverse
definitions and flexible forms of anomalies: a specific event type, a sub-sequence or the entire sequence. This, in turn, increases the
difficulty in interpreting detected anomalies, a critical element in raising human confidence with the analysis results. Most prior work in
event sequence anomaly detection focuses on detecting only one type of anomaly with a specific application domain. Such approaches
do not provide flexible ways of identifying diverse types of anomalies, and provide only limited support for result interpretation. In this
paper, we propose an unsupervised anomaly detection algorithm based on Variational AutoEncoders (VAE). The model learns latent
representations for all sequences in the dataset and detects anomalies that deviate from the overall distribution. Moreover, the model
can estimate an underlying normal progression for each given sequence represented as occurrence probabilities of events along the
sequence progression. Events in violation of their occurrence probability (i.e., event occurrences with small occurrence probability, and
absent events with large occurrence probability) are identified as abnormal. We also introduce a visualization system, EventThread3,
to support interactive exploration of the analysis result. The system facilitates interpretations of anomalies within the context of normal
sequence progressions in the dataset through comprehensive one-to-many sequence comparison. Finally, we quantitatively evaluate
the performance of our anomaly detection algorithm and demonstrate the effectiveness of our system through case studies in three
different application domains and report feedback collected from study participants and expert users.

Index Terms—Illustrative Visualization, Time Series Data, Visual Knowledge Discovery, Visual Knowledge Representation

1 INTRODUCTION

Anomaly detection is a common task for event sequence data analy-
sis as it often contributes to the discovery of critical and actionable
information [12]. Effective use of event sequence data can require
identifying sequences that deviate from the typically occurring behav-
ior [37]. For example, a doctor may be interested in finding patients
whose postoperative response is different from other patients who have
had the same surgery, so that the doctors can provide personalized care
plans for similar patients in the future.

A variety of work has been developed for detecting anomalies in
a wide range of areas, such as medical diagnosis [24], fraud detec-
tion [42], and application log surveillance [40]. Especially for event
sequence data, traditional statistical models [38, 46], supervised or
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semi-supervised approaches [33], and unsupervised methods [35] have
been applied. Nevertheless, there are three major challenges we face
for anomaly detection in event sequence data.

The first critical challenge is the development of an unsupervised
anomaly detection method that can efficiently handle the complex
temporal structure of event sequences. Regarding the performance
of anomaly detection methods, traditional statistical models are sub-
optimal for event sequence data because they fail to capture complex
structures in the data and require fine tuning of parameters for differ-
ent training sets [18]. To circumvent the issue of algorithm tuning,
supervised and semi-supervised approaches have become increasingly
popular and applied to diverse areas of anomaly detection [8,16]. How-
ever, since anomalies are rare and real-world event sequence datasets
are often huge in scale, it can be difficult, if not impossible, to obtain
the required labels for these approaches.

The second challenge is that anomalies themselves are hard to pre-
cisely define. Since the nature of anomalies can differ fundamentally
across domains, anomaly detection techniques are often tailored to
specific application domains such as computer system diagnosis [26],
medical treatment examination [3], and financial fraud detection [5].
Furthermore, even within a given domain, there is often no clear defini-
tion or criteria to distinguish between normal and abnormal cases.

Beyond these two challenges for general anomaly detection–the lack
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of labeled data, and the fuzzy boundary between abnormal and normal
cases–the third key challenge lies in providing interpretable information
about anomalies that supports understanding of the analyzed result. Due
to the temporal characteristics of event sequence data and the black-
box nature of machine learning models, it is especially challenging to
interpret anomalous sequences once identified. For analysts to derive
actionable insights, they must be able to understand how anomalies
are different from “normal” sequences, which event or series of events
characterize the anomaly, and which events suggest actions that could
help avoid such cases in the future.

To tackle the three challenges, we propose an unsupervised anomaly
detection model for event sequence data that builds upon LSTM-based
Variational AutoEncoders (VAE) [36]. A recent advance over tradi-
tional autoencoder-based anomaly detection techniques, VAE use a
probabilistic encoder for modeling the distribution of the latent vari-
ables [2]. Such probabilities give more principled criteria for identify-
ing anomalies and do not require model-specific thresholds. As a result,
VAE better facilitate objective judgments for deciding the boundary
of anomalous sequences compared to other unsupervised algorithms.
Moreover, to account for the temporal dependencies of event sequence
data into a VAE, we replace feed-forward networks with LSTM neural
networks to incorporate the sequential nature of event sequence data.
The model is trained to learn a latent representation for each event
sequence and identify anomalous sequences based on their deviation
from the overall distribution. A mean sequence is computed from the
reconstruction probabilities for each sequence detected as an anomaly,
which shows the occurrence probabilities of events in normal circum-
stances, representing a corresponding “normal” sequence progression
for the anomaly. For example, a patient having internal bleeding should
normally be sent to emergency for surgery, thus the reconstruction
probabilities shall identify surgical events with high probabilities af-
ter hospital admission. To facilitate anomaly interpretation, we also
compare the anomaly sequence with a collection of sequences having
similar progression but identified as “normal” so as to uncover their
critical differences.

The system was iteratively developed and guided by feedback from
domain experts. To incorporate experts’ domain knowledge within the
anomaly detection and interpretation process, we present an interactive
graphical interface which allows one-to-many comparisons between a
selected anomalous sequence and a set of normal sequences at multi-
ple levels of granularity. The interface design includes a comparison
glyph to highlight suspicious events and incorporates rich interactions
to enable dynamic tweaking of the analysis result. Interactions also sup-
port the interpretability of the anomalies through additional contextual
information. The main contributions are as follows:

• Anomaly Detection Algorithm. We introduce a VAE-based
anomaly detection algorithm for detecting anomalous sequences
within a collection of temporal event sequences. The algorithm in-
fers a normal progression of events for each anomalous sequence
and identifies anomalous events that deviate from the normal
progression in an interpretable manner.

• System for Interactive Anomaly Analysis. We present an inter-
active visual analysis system for dynamic exploration and inter-
pretation of the anomaly detection result. The system allows users
to investigate the anomalous sequence in the context of normal se-
quences through one-to-many sequence comparisons at different
levels of granularity. A comparison glyph is designed to highlight
differences and facilitate visual comparison. Rich interactions
are provided to allow flexible exploration and incorporate human
knowledge during the analysis.

• Evaluation. We evaluate our proposed method both quantita-
tively and qualitatively through (1) a performance evaluation of
our VAE-based anomaly detection algorithm by comparing with
two baseline methods, (2) three case studies conducted with real-
world datasets in different application domains. We also report
the comments collected from study participants.

2 RELATED WORK

In this section, we provide an overview of the analytical and visualiza-
tion techniques that are most related to our work, including (1) anomaly
detection algorithms, (2) visualization for anomaly detection, and (3)
visual comparison techniques.

2.1 Anomaly Detection Algorithms
Anomaly detection has been extensively studied over the past years [12].
Methods for anomaly detection can be broadly categorized into tensor-
based algorithms [13], statistics-based algorithms [41], classification-
based algorithms [33], and neighbor-based or distance-based algo-
rithms [6]. Although these methods are effective in identifying anoma-
lies with numeric results, they are not capable of considering the se-
quential structure when detecting anomalies for event sequences.

Meanwhile, as the data volume grows, it becomes increasingly dif-
ficult to apply traditional anomaly detection algorithms. More recent
work with deep learning-based anomaly detection (DAD) algorithms
has been developed to meet this challenge. They have been applied to
a variety of anomaly detection applications including fraud detection,
cyber-intrusion detection, medical anomaly detection, sensor networks,
video surveillance, internet-of-things, log analysis, and industrial dam-
age detection [10]. Types of DAD models include unsupervised (e.g.,
autoencoder, generative adversarial, variational), semi-supervised (e.g.,
reinforcement learning), hybrid (e.g., feature extractor+traditional algo-
rithms) [15], and one-class neural networks [11].

In this work, we leverage a variant of Variational AutoEncoders
(VAE) which can both deal with large volumes of unlabeled data, and
identify anomalous patterns with probability measures [2]. Further-
more, given the temporal information inherent to event sequence data,
our approach replaces the feed-forward networks with LSTM neural net-
works. This generates a output close to the original input and provides
latent feature vectors for each event sequence in the dataset. However,
the boundary between normal and anomalous behavior is often not
precisely defined. This lack of a well-defined boundary poses chal-
lenges for traditional and deep learning-based algorithms alike. For this
reason, incorporating human domain knowledge through interaction
can benefit the anomaly detection process.

2.2 Visual Anomaly Detection
To facilitate anomaly detection and reasoning over the results, re-
searchers have developed many visual anomaly detection tools [8, 43].
As previously mentioned, two major challenges in anomaly detection
are (1) the fuzzy boundary between normality and abnormality, and (2)
the absence of high quality labeled data. Visual anomaly detection tools
that allow domain experts to leverage their knowledge and experience
can help overcome these challenges. For these tools, effectiveness and
intuitiveness are both key design priorities, and a number of alternative
visual analysis approaches have been proposed. This includes methods
for the detection of anomalous user behaviors from sequence data [4].
Chae et al. [9] applied traditional control chart methods together with
seasonal trend decomposition to extract outliers. Thom et al. [43] in-
troduced a visual analysis system to monitor for anomalous bursts of
keywords. More recently, FluxFlow [48] was developed to reveal and
analyze anomalous information processes in social media.

Although systems mentioned above are often designed to help detect
anomalous points, few approaches focus on identifying anomalous
sequences or on the comparison between the detected outliers and “nor-
mal” sequences. To enhance the interpretability of the analyzed results,
our system supports one-to-many sequence comparison at multiple
granularities. We also design comparison glyphs to help with discovery
and support rich interactions to facilitate result interpretation.

2.3 Visual Comparison
Visual comparison is a common task when investigating data similar-
ities and differences [29]. In the information visualization domain,
Gleicher et al. [20] classify visual comparison techniques into three
categories: juxtaposition by comparing objects side-by-side, superpo-
sition by overlaying data with a shared reference in the same space
(e.g., [44]), and explicit encoding by directly computing and presenting
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the differences or correlations (e.g., [21]). Each approach has its advan-
tage, and multiple methods can be employed in combination to make a
comparison. Within the three major categories, a variety of alternatives
have been developed for specific tasks. For example, Kehrer et al. [30]
proposed a formal model for hierarchically-partitioned category com-
parison with small-multiple displays. This approach was inspired by
the ineffectiveness of juxtaposition when dealing with a large number
of categories. Their work supports superposition and explicit encoding
of differences for semantically meaningful comparisons.

Visual comparisons have also been studied in the context of event
sequence analysis. MatrixWave [49] applied superposition with an
explicit encoding of sequence differences when comparing two event
sequences. EventAction [14] used a calendar view to show several
temporal event sequences and placed them in a ranked list to compare
different sequences via juxtaposition. Most of the previous work fo-
cuses on the visual comparison of single sequences (one-to-one), or
of event sequence groups (many-to-many). However, for anomaly de-
tection, the one-to-many comparison is crucial. In ET3, we provide an
interactive comparison between the anomalous sequence and normal
progressions (one-to-many) at three levels of granularity.

3 SYSTEM OVERVIEW

Our system is designed to support interactive exploration and interpre-
tation of anomalies in event sequence data. The designs were iteratively
improved over four months through regular discussions with a domain
expert in the anomaly detection field. We identified the following de-
sign requirements (R1-R4) for detecting anomalies in event sequences.
These requirements were distilled from (1) feedback from the domain
expert, (2) the authors’ experiences with event sequence analysis, and
(3) a thorough review on existing techniques and their limitations.

R1 Remove noise from the data and extract key features for
anomaly detection. Real-world event sequence datasets often in-
clude a large amount of noise as reflected by highly heterogeneous
event types and uncertain event ordering. The system should be
able to filter out unimportant variation to allow for higher quality
subsequent analysis.

R2 Detect anomalous instances within unlabeled datasets. Real-
world event sequence datasets are often large and rare contain
labels. It can be enormously time-consuming to manually find
and label rarely occurring anomalous instances. Users, therefore,
often wish to focus their inspection on detected outliers rather
than conduct a comprehensive search of the entire dataset. Thus,
the system should incorporate an unsupervised anomaly detection
mechanism that can narrow the scope of analysis.

R3 Localize anomalous events within abnormal sequences. The
interpretation of the detected anomalous sequences relies on the
analysis of low-level events. For example, in medical health
record analysis, the clinical path of a patient may be detected
as an anomaly due to a misused medicine. However, real-world
event sequences can be long in length and heterogeneous in types,
which makes it difficult to identify anomalous events. Therefore,
the system should be able to highlight anomalous events within
the abnormal sequence to facilitate reasoning and interpretation.

R4 Analyze anomalous sequences within the context of normal
progressions. Instead of focusing on a single anomalous event,
analyzing anomalies within the context of normal progressions
can provide insights for interpretation. For example, a medical
expert may inspect how well treatment plans are followed under
normal circumstances to understand how an anomalous treatment
event deviates from the typical population. Moreover, compar-
ing normal and abnormal sequences can help reveal higher-level
anomalous patterns (e.g., anomalous sub-sequences, anomalous
event ordering) beyond low-level anomalous events. Thus, the
system should allow users to view anomalous sequences within
the context of normal progressions to help interpret the anomalies.

R5 Support interactive sequence analysis and exploration at dif-
ferent levels of granularity. Sequences of events may vary sig-
nificantly in both events observed and the speed of progression.

Fig. 2. The ET3 system integrates three major modules to support
interactive visual anomaly detection of event sequence data, including a
preprocessing module, an analysis module and a visualization module.

Different levels of sequence aggregation may yield different in-
sights during the comparison. The system should, therefore,
provide users with an interactive environment to enable flexible
comparisons under various levels of aggregation, from detailed
low-level events to aggregated high-level progressions.

Motivated by these requirements, we developed ET3, an interactive
visualization system for detecting and visualizing anomalies in tem-
poral event sequences. As illustrated in Fig. 2, the system includes
three major modules: (1) a data preprocessing module, (2) an anomaly
detection module, and (3) a visualization module.

The data preprocessing module focuses on reducing noise to prepare
high-quality event sequence data for subsequent training of the anomaly
detection model (R1). In particular, we measure the importance of each
event using Term Frequency-Inverse Document Frequency (TF-IDF)
scores to remove noisy events and exclude extremely short sequences
(i.e., sequence length < 2) [23]. In the analysis module, we identify
anomalous sequences (R2) and uncover event occurrence probabili-
ties of normal progressions from a trained Variational AutoEncoders
(VAE) model with the Long Short Term Memory networks (LSTMs).
We further localize anomalous events within the detected outliers by
referring to the occurrence probabilities of each event in normal pro-
gressions (R3). The analysis results are then sent to the visualization
module for interactive visual analysis of the anomalous sequences via
multi-granular sequence exploration and data comparison (R4, R5).

4 VAE-BASED ANOMALY DETECTION

In this section, we formalize the analytical tasks of event sequence
anomaly detection and introduce the unsupervised VAE-based anomaly
detection model we propose to solve this problem.

4.1 Algorithm Overview
Detecting anomalies in event sequences is analytically challenging for
three reasons. First, the sequential and temporal nature of event se-
quences results in complex anomaly structures, which makes it difficult
to determine the abnormality of the entire corresponding sequences.
Second, event sequence datasets are typically diverse with different
lengths and progression patterns, resulting in high variability within
the training data. Third, given the characteristics above, it is difficult to
characterize abnormalities for interpretation, which makes it difficult
to understand the reasons for the model’s decisions.

To address these challenges, we adapted a Sequence-to-Sequence
Variational AutoEncoder (VAE) to interpretably detect anomalies in
event sequences. In particular, we leverage the merits of deep neural
networks in learning complex sequential patterns to address the first
challenge and the probabilistic foundation of VAE in capturing data
variability to solve the second. Finally, we employ the reconstruction
probabilities output from the VAE to facilitate the interpretation of the
anomalous sequences. As shown in Fig. 3, the algorithm consists of
three major steps: (1) latent feature extraction using an LSTM-based
VAE, (2) anomalous sequence detection, and (3) anomalous event
analysis. In the first step, we train the VAE-based model to extract
low-dimensional feature representations (i.e. the latent vector zzz) to
characterize the progression of each input sequence. The second step
employs the latent vectors to measure the outlierness for each sequence
based on their Local Outlier Factor (LOF), which is then to used to
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identify anomalous sequences (R2). In the third step, the latent vectors
are fed to the decoder of the VAE model for sequence reconstruction
and event anomaly detection (R3).

4.2 LSTM-Based Variational AutoEncoder
We first introduce the structure of the Sequence-to-Sequence VAE
model. The model contains two modules: the VAE encoder and the
VAE decoder. Both modules are designed using Recurrent Neural Net-
works to better extract sequential patterns from event sequence data. In
particular, the encoder captures the latent distribution of sequences and
the decoder inversely restores the distribution to estimate the occurrence
probabilities of events in each time slot.

VAE Encoder. The encoder is trained to abstract the input sequence
{X = xxxi}n

i=1 into a low-dimensional latent feature vector that describes
a sequential distribution of events occurring in the sequence. In this
input, n is the length of the sequence and xxxi ∈ {0,1}|E| is the multi-hot
encoding of the events occurring in the i-th time step. Each coordinate
represents an event type, which is marked 1 if the corresponding event
occurs in the i-th time step, or 0 otherwise. After feeding the multi-hot
vectors into the corresponding layer of RNN, the state of the entire
sequence is extracted and represented in the hidden state vector hhhenc of
the last layer, which is denoted as follows:

hhhenc = encoder(X) (1)

The hidden state vector hhhenc is projected into two vectors µµµ and δδδ to
parameterize a normal distribution, representing the mean value and
standard deviation of the normal distribution respectively. To take the
variability of the latent space into account (i.e., to represent the diversity
present in normal cases), we draw a low-dimensional latent vector zzz by
randomly sampling from the distribution. We then use this vector as a
representative of the original distribution for subsequent decoding.

VAE Decoder. In the decoder, we reconstruct the input sequence
from the extracted latent feature vector zzz. Specifically, zzz is fed to each
layer of the RNN to estimate the probability distribution of events for
each time slot. We formally define the decoding procedure as follows:

X
′
= decoder(z) (2)

where X
′

is a sequence of probability distributions denoted as X
′
=

{xxx′i}n
i=1, and the element x

′
i, j in xxx

′
i ∈ R|E| represents the occurrence

probability of j-th event at the i-th time step.
Training Process. We train the model with a goal of narrowing the

gap between the original input sequence and its reconstruction, which
can be formally defined as minimizing the following loss function:

L = Lr +wkl ·Lkl (3)

Lr =−
1
n

n

∑
i=1

|E|

∑
j=1

(we j xi, jlog(x
′
i, j)+(1− xi, j)log(1− x

′
i, j)) (4)

Lkl =−
1

Mz

Mz

∑
i=1

(1+ log(σ2
i )−µ

2
i −σ

2
i ) (5)

The first term Lr is the reconstruction loss which calculates the
weighted cross entropy between xi, j and x

′
i, j, indicating an event-level

difference between the reconstruction and the original input with respect
to the j-th event at the i-th time step. In particular, a parameter we j =
1/log(n j) is introduced to reduce the marginal importance of high-
frequency events so as to address the issue of skewed dataset, where n j
is the number of occurrences for event e j. The second term Lkl is the
Kullback-Leibler Divergence Loss which estimates a distribution-level
difference between the distribution of the latent vector zzz and a normal
distribution N(0,1), where Mz is the dimension of the latent vector zzz.
These two terms are balanced with a parameter wkl .

Parameter Settings. Both the encoder and decoder employ LSTM
units [25] with 300 hidden nodes. We set the dimension of the latent
vector to 16. The parameter wkl adaptively increases from 0.1 to 0.5
during the training process to make sure the reconstruction loss is

optimized with high priority. Moreover, we optimize the loss function
with the Adam optimizer [31] with training data batch size of 80 for
each training step. We train the model on an Nvidia Tesla K80 graphics
card. Each training epoch takes approximately 10.5 seconds on average.

4.3 Anomalous Sequence Detection
After training the model, we employ the latent vector zzz of each input
sequence to detect anomalous sequences in the dataset (R2). Specifi-
cally, we adapt the Local Outlier Factor (LOF) to evaluate the degree
of anomaly for each sequence in the latent space. We formally define
the anomaly degree as follows:

LOF(z) =
∑y∈Nk(z) Dk(y)

|Nk(z)|Dk(z)
(6)

Dk(z) =
|Nk(z)|

∑y∈Nk(z)(max(dk(y),d(z,y)))
(7)

where Nk(z) is a set of the k-nearest neighbors of zzz, Dk(z) is the neigh-
borhood density of the vector in the latent space, d(z,y) is the Euclidean
distance between z and y, and dk(y) is the maximum distance between
y and its neighbors.

In the unsupervised anomaly detection process, it is assumed that the
majority of the sequences in the dataset are normal. As the LOF score
compares the local density of the latent vector with its neighborhood
vectors, normal sequences should group within a dense space with
smaller LOF scores, while instances in sparse areas will have larger
LOF scores and will be identified as outliers.

4.4 Anomalous Event Analysis
To facilitate the interpretation of sequence anomalies, we further iden-
tify anomalous events that contribute to sequence abnormality by ana-
lyzing the reconstruction probabilities (R3). As mentioned earlier, the
reconstruction probabilities are restored from the latent vector zzz that is
sampled from the latent sequence distribution. As we assumed that the
majority of the sequences are normal, the reconstruction probabilities
shall be similar to the normal progression of sequences. Moreover, the
training objective ensures that the reconstruction probabilities are also
similar to the original input sequence. Combining these two points, the
reconstruction probabilities of the anomalous sequences can be used to
infer an expected “normal” progression for the anomalous sequence.
From this, we can identify the anomaly events within the anomalous
sequence that deviate from the expected normal progression.

We categorize the anomalous events into two types: missing events
and redundant events. Defined intuitively, missing events (noted as xmis)
represent the cases where an event shows a high occurrence probability
in the reconstruction but does not appear in the sequence. Conversely,
redundant events (noted as xred) indicate events that exist in the anoma-
lous sequence but are not expected to occur. Based on this intuition,
we calculate an anomaly score for each event to assess its level of
abnormality. The anomaly scores for missing events and redundant
events are Pr(X = xmis) and 1−Pr((X = xred)), respectively, where
Pr(X = x) indicates the occurrence probability of the corresponding
event derived from the reconstruction. Consequently, events with an
anomaly level higher than a user-defined threshold are identified as
anomalous. The threshold is by default set as 0.6, which can be adjusted
by users during an analysis via the visualization module.

5 VISUALIZATION

This section presents the visualization and interaction designs for the
ET3 system. We first introduce a set of tasks that guide the design
choices of our system. We then describe ET3’s key design elements.

5.1 Design Tasks

The ET3 design was iteratively refined through a four-month develop-
ment cycle based on feedback collected from regular meetings with our
domain expert in the field of anomaly detection. In response to that
feedback, we formulated a set of design tasks to solve the key chal-
lenges in visually analyzing anomalies in event sequence data and also
to further meet the design requirements (R3-R5) discussed in Section 3.

4



Fig. 3. Schematic diagrams of the model, (1) the VAE model to obtain
the latent vector of the input sequence, (2) anomaly detection of the
overall sequence, and (3) anomalous event detection based on the
reconstruction of the input sequence.

T1 Provide an overview of the analysis scope. The analyzed event
sequence dataset may contain many anomalous event sequences
with different levels of abnormality. To help users find anomalous
sequences of interest for subsequent analysis, the system should
provide an overview of all sequences detected as anomalies in the
dataset and illustrate their level of abnormality.

T2 Emphasize anomalous events within the sequence. To help
quickly explore complex event sequences and uncover the reason
behind an abnormality, the visualization should be designed to
highlight key events that are suspicious of being anomalous.

T3 Facilitate result interpretation in context. Interpreting
anomaly detection models is critical for establishing users’ trust
in the analysis result. It is also challenging because the behavior
of deep neural networks is difficult to explain. The designed
visualization should help users effectively analyze the detected
anomalies within the context of the entire training set, to uncover
the difference between abnormal and normal sequence progres-
sions and facilitate reasoning about the analyzed result.

T4 Support sequence exploration at multiple levels of granular-
ity. Applying different levels of aggregation for a group of se-
quences can result in distinct interpretations of the result. For
example, the anomalous events detected by comparing an anoma-
lous sequence with an individual normal sequence may be differ-
ent from the result when comparing with a subgroup. To support
more accurate findings, the system should support the exploration
of normal sequences at different levels of granularity.

T5 Easy access to raw data and auxiliary context. While aggre-
gating event sequences and extracting high-level patterns are
essential for easy exploration, access to raw data is also important
in raising users’ confidence in assessments of data anomalies.
Thus, the system should enable users to easily access low-level
details on demand.

T6 Incorporate human judgement in the analysis loop. Anomaly
detection is prone to error due to its subjective nature. The defini-
tion of the anomaly may also vary in different applications. The
system should provide rich interactions to help users refine the
analysis results according to their domain knowledge.

5.2 User Interface
Guided by the tasks above, ET3 incorporates seven key views to visually
analyze the anomalous sequences (Fig. 4). A user starts with the
anomaly overview (Fig. 4(1)), which provides an MDS projection of
the latent vectors for all anomalous sequences in the dataset and allows
users to select an anomalous sequence for subsequent analysis (T1).
The similarity view (Fig. 4(2)) displays the distribution of all normal
sequences, and their similarities to both the mean sequence and selected
anomalous sequence (T1). From this view, users can select a group of
records for review in the main panel.

The main panel supports visual anomaly detection via compari-
son and is composed of two major parts. First, a reconstruction view
(Fig. 4(3)) shows the occurrence probabilities of the events in each time
slot. Second, two coordinated views (Fig. 4(4-5)) support comparison
of a selected anomaly with normal progressions in different modes.

Specifically, the flow overview (Fig. 4(4)) aggregates the flow of normal
sequences into a Sankey-like format with the evolution of the selected
anomaly overlaid at the top to show differences. The comparison view
(Fig. 4(5)) separates the flow of the anomalous sequence from the nor-
mal sequences with comparison glyphs (Fig. 4(a)). These glyphs are
designed to facilitate visual comparison and highlight suspicious events.
The normal sequences are visualized with three different variants to
support analysis at various levels (T4). The three variants—sequence
comparison view(Fig. 4(5a)), flow comparison view(Fig. 4(5b)), and
summarization view(Fig. 4(5c))—display individual sequences, pro-
gression patterns, and event distributions, respectively.

Access to raw sequence data is provided via two panels (T5). Details
about the selected anomaly are displayed in the anomalous record view
(Fig. 4(6)) while data for similar normal sequences are displayed in the
similar record list (Fig. 4(7)).

Usage scenario. To understand how these different views work
together to identify and interpret event sequence anomalies, let us
consider a use case of a drug regulator, Jim, who is responsible for ana-
lyzing the medication records for 5,000 patients to investigate misuse of
prescription drugs. Taking the records of all patients as the training set,
the model outputs 50 patients who exhibit anomalous medication usage.
Jim needs to further exploration to determine the true misuses. He first
selects a sequence with high LOF score from the overview. In response,
the mean sequence of the selected anomaly is displayed in the mean
sequence view. Jim switches to the statistics view and selects a group of
normal sequences that are most similar to the mean sequence. The flow
overview presents the evolution pathways for all the selected sequences,
from which Jim notices that most patients following a common treat-
ment plan. However, the flow of the anomalous patient contains a
number of medicines that deviate from the common pattern. Jim splits
the flow of the anomalous sequence from the normal sequences for a
clearer illustration of their differences. He explores the progression of
normal patients to select different subgroups for comparison and checks
the comparison glyphs to find unexpected medications identified by the
system. Jim notices medicine A is highlighted in several comparison
glyphs. However, Jim also knows that A should not be taken simul-
taneously with medicine B. Jim selects a subgroup of patients taking
medicine B for further comparison, and realizes none of the normal
patients took medicine A. The sequence view and summarization view
further confirm his finding.

5.3 Interactive Anomalous Event Analysis
To help interpret a selected anomaly in the context of the progression
of normal sequences (T3), our system is designed to support interactive
one-to-many visual comparison. The comparison view in Fig. 4(b) is
vertically divided into three regions: an anomalous sequence at the top,
a group of comparison glyphs in the middle, and a summarization of
normal sequences at the bottom.

5.3.1 Anomalous Sequence
The selected anomalous sequence is displayed using a line of rectan-
gular nodes ordered by time of occurrence. To deal with the issue of
event co-occurrence and avoid event overlap, we display the sequence
with a visual technique introduced in [27]. Specifically, concurrent
events are grouped into treemaps at each time slot, and all event nodes
are color-coded according to the type of anomaly. To make full use of
the horizontal space, event nodes are spaced with equal distance and
connected with duration bars to reveal the span of time. The time span
between events is proportional to the duration bar.

5.3.2 One-to-Many Sequence Comparison
Our system incorporates a one-to-many sequence comparison mech-
anism, which allows users to validate the anomalies detected by the
model by comparing the anomalous sequence with a collection of simi-
lar sequences from the normal group. This aims to help users establish
confidence in the analysis result based on evidence in the dataset.

The comparative analysis consists of two steps: sequence alignment
and support rate calculation. In the first step, we employ a sequence
alignment technique introduced in [22] to semantically map each nor-
mal sequence to the focal anomaly based on Dynamic Time Warping
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Fig. 4. The user interface of ET3 consists of seven key views to support comparison-based visual anomaly detection, which includes a (1) anomaly
overview, a (2) similarity view, a (3) reconstruction view, a (4) flow overview, a (5) comparison view with three variants (5a-5c), an (6) anomalous
record view and a (7) similar record list. The comparison glyphs (a) are designed to intuitively highlight anomalous events in the sequences so as to
facilitate visual comparison.

(DTW) [34]. The intention is to address the issues of variable sequence
length and progression rate, so as to support a more precise comparison
of events. After sequence alignment, we compare events occurring in
each time slot to calculate a support rate for each anomalous event
identified in Sec. 4.4. Intuitively, the support rate represents the propor-
tion of normal sequences that “support” the corresponding event to be
abnormal. More specifically, the support rate of a missing event xmis

is the proportions of sequences that include xmis in the corresponding
time slot, while the support rate for xred is the contrary.

5.3.3 Comparison Glyph
To facilitate visual comparison, we design a comparison glyph
(Fig. 4(a)) that highlights the anomalous events in each time slot. We
encode four critical variables to help quickly identify problematic time
slots and events that need further inspection: the overall abnormality
of the time slot, the abnormality of each event, the type of anomaly,
and the support rate for each anomalous event. Specifically, each circle
inside the glyph represents an anomalous event. The size of each inter-
nal circle(Fig. 4(a1)) indicates the anomaly score of the corresponding
event derived from Sec. 4.4, and the size of outer circle (Fig. 4(a2)) rep-
resents the overall abnormality at the corresponding time slot. The type
of abnormality (e.g., missing event or redundant event) is distinguished
with different colors, consistent with other views. The support rate of
each anomalous event (Sec. 5.3.2) is encoded with color saturation.

Updating with user feedback. To leverage analyst domain knowl-
edge, the system allows users to interactively tweak the anomalous
events displayed in the comparison glyphs. As shown in Fig. 4(b),
users can tune the thresholds for the anomaly score and support rate
that determine the conditions at which an event is identified as anoma-
lous. Moreover, when users select a subgroup of normal sequences
during the analysis, the comparison glyphs will also be updated simul-
taneously to reflect the support rate within the subgroup (Fig. 1(1)).

5.3.4 Multi-granular Sequence Aggregation
To support more comprehensive one-to-many sequence comparisons,
the design provides three coordinated comparison views (Fig. 4(5a-c)).
The views support comparison at different levels of aggregation (T4),
and transitions allow users to move smoothly from one view to another.

Sequence Comparison View. The sequence comparison view dis-
plays the sequences of normal records individually, which aims to
support sequence-to-sequence level comparison and efficient access to
the raw data. For example, to avoid introducing noisy events, a doctor
may be interested in comparing the anomaly only with the most similar
“normal” patients. As shown in Fig. 4(5a), the normal sequences are

displayed in a scrollable list, ranked from top to bottom according
to the degree of similarity. As described in Sec. 5.3.2, each normal
sequence is temporally warped and aligned to the anomalous sequence
for comparison. We then apply this alignment to each normal sequence
to map events into corresponding time slots. To allow an intuitive
sequence-to-sequence comparison, the encoding schema of each indi-
vidual sequence is kept consistent with the anomalous sequence. Users
can select any individual sequence to update the comparison glyphs
with their differences during the analysis.

Flow Comparison View. The flow comparison view (Fig. 4(5b))
provides a progression-level summarization on all normal sequences
by aggregating them into a flow-based visualization. This view aims to
incorporate confidence of abnormality for anomalous events by com-
paring the anomalous sequence with subgroups of sequences having
particular progression patterns. Specifically, identical events in each
time slot are grouped into nodes, and the transition paths among events
in adjacent time slots are merged into links. Note that when multiple
events co-occur at the same time slot, an individual will be equally
divided by the number of event types to ensure the total population
remains consistent throughout the sequence progression. The height of
each node represents the population (weighted by event co-occurrence)
having the event at the corresponding time slot, with the exact number
displayed in a label to the left side of each node. Event nodes are con-
nected with links to represent a sequence path from one event to another.
To incorporate time information into the flow diagram, we employ a
specially designed link introduced in [27]. Specifically, each link is
consist of two key components: a duration bar and a connection line.
The height of the duration bar shows the proportion of the population
corresponding to the link, while the width indicates the average time
gap between events. The connection line links the end of the duration
bar to the destined event and reveals patterns of sequence progression.

Summarization View. In the summarization view (Fig. 4(5c)),
nodes in each time slot are further aggregated into a more compact form,
illustrating the highest-level summarization of the distribution of events.
This view aims to support a comparison of the anomalous sequence
against the overall progression of the entire set of similar records. To
facilitate the comparison, we encode the summarized sequences in a
way similar to the anomalous sequence, with the only difference that
the size of each inner rectangle represents the size of the population.

5.4 Other Views

The system also includes a number of contextual views to display
auxiliary information and provide access to raw data (T5). These views
are coordinated with the selections and filters made in other views to
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support the interpretation of anomalies.
Anomaly Overview. The anomaly overview (Fig. 4(1)) is designed

to help analysts choose sequences of high anomaly degree for subse-
quent analysis. It shows the distribution of all anomalous sequences
based on multidimensional scaling (MDS) projection of the latent vec-
tor z. Each anomalous sequence is represented as a circle with the
size indicating the LOF score, and the color saturation indicating the
sequence length. The distance between two circles reflects their simi-
larity, and we further incorporate a colored contour map to illustrate
the local density of circles. Intuitively, circles with larger size and in
low-density areas are the most likely anomalies.

Similarity Distribution View. The similarity distribution view
(Fig. 4(2)) displays the distribution of all normal sequences in the
dataset based on their similarity to the progression of the selected
anomaly. This view aims to help users select a proper group of nor-
mal sequences to support comparative analysis. We measure sequence
similarity in two ways: their distance to the mean sequence, and their
distance to the selected anomaly. The distances are calculated by align-
ing each normal sequences to the mean sequence and the anomalous
sequence, respectively. Intuitively, sequences similar to the mean se-
quence would include the events with high occurrence probability at
each time slot, though not necessarily with the same progression. Se-
quences similar to the anomalous sequence, meanwhile, tend to have
events and progression patterns that exactly match the anomalous se-
quence. The system allows users to switch between the two types of
measurement according to their preference.

Reconstruction View. The reconstruction probabilities (given by
Equation 2) of the selected anomaly are shown in the reconstruction
view (Fig. 4(3)) with the intent of providing an overview of the occur-
rence probabilities of events for each time slot. The reconstruction
probabilities are shown as a line of circle packings arranged in time or-
der. The size of each circle shows the value of probability, and the color
indicates different anomaly types (with colors consistent with other
views). Circles close to the center generally have larger occurrence
probability compared to those towards the border, providing users with
an overview on the probability distribution of the anomalous events.

Flow Overview. The flow overview presents progression-level dif-
ferences between normal sequences and the abnormal sequence using
a flow-based visualization. As shown in Fig. 4(4), the flow of normal
sequences are colored in light grey as background, with the flow of the
abnormal sequence overlaid on the top. This view serves as a quick
overview at the beginning of sequence comparison to illustrate how the
progression of the anomalous record deviates from the normal group.

Anomalous Record View and Similar Record List. The anoma-
lous record view (Fig. 4(6)) and the similar record list (Fig. 4(7))
provide access to raw event sequence data for the anomalous sequence
and similar sequences, respectively. These low-level details provide
detailed evidence to support interpretation (T4).

5.5 Interactions

The ET3 system includes several user interactions (T6) to support
exploratory analysis.

Stage Merging. We leverage a recently proposed progression anal-
ysis technique [22] to segment the anomalous sequence into different
stages. As illustrated in Fig. 4(c), stages are marked with line segments
under the identifier of the time slots. Users can click on a stage identifier
to merge or expand all visual elements in the main panel that align to
the corresponding time slots. This interaction aims to reduce the length
of sequences for a more efficient exploration while also providing a
high-level summarization of an anomaly’s progression stages.

Selecting and Filtering. Our system allows users to navigate the
visualization and make more focused inspection through flexible data
selection and filtering. For example, the system allows users to make
selections of both individual sequences of interest or subgroups of
sequences following particular progression patterns in the sequence
comparison and flow comparison views, respectively. After a selection,
the system reruns the comparison between the anomalous sequence and
the selected normal sequences to update the comparison glyphs based
on the analysis result.

Fig. 5. Performance evaluation results of our VAE-based algorithm (VA)
in comparison with two baseline methods (kNN, HMM). The (a) ROC
curves and (b) precision-recall curves indicate that our approach (VA)
effectively detects anomalies and outperforms the baseline methods.

The system incorporates three types of filters for users to tune the
visualization result. This includes a probability filter and a support rate
filter for supporting dynamic adjustment of the detection boundaries
(as introduced in Sec. 5.3.3). In addition, a node filter allows control
tune the flow overview and the flow comparison view. To prevent event
anomalies in small populations from being filtered out, nodes in the
flow diagram that are identified as abnormal are preserved regardless of
the current filter threshold. Moreover, the system allows users to brush
the reconstruction view to zoom in to a specific range of time slots to
narrow the analysis scope (Fig. 4(e)).

Highlights and Tooltips. The system is equipped with linked-
highlighting, which helps users to track the occurrence of event types
across different views. Specifically, when users hover their mouse over
an event, all visual elements representing the same event type will be si-
multaneously highlighted in all views. Moreover, when users select an
individual sequence in the sequence comparison view, or a progression
path in the flow comparison view or flow overview, all corresponding
visual elements will be highlighted to mark the users’ selection. Finally,
descriptive tooltips (Fig. 4(f)) are triggered when hovering over any
visual elements throughout the system.

Details-on-Demand. The system also supports a details-on-demand
model of exploration. Apart from providing informative tooltips during
the analysis, the low-level details displayed in the similar record list
and the sequence comparison view are updated in response to changes
in the users’ selection in other views.

6 EVALUATION

The ET3 system provides a unique solution for detecting anomalous
sequences within general event sequence datasets. The visualization is
designed to support the interpretation of detected anomalies with visual
comparisons. We assess the effectiveness of ET3’s analytical model
and visualization design through a quantitative evaluation, three case
studies, and qualitative feedback from domain experts.

6.1 Quantitative Evaluation
We compare the performance of our VAE-based anomaly detection
algorithm (denoted as VA) with two baseline methods using an intrusion
detection dataset, snd-cert [19]. The dataset consists of sequences of
operating system calls that are labeled in terms of the system state (i.e.,
normal or hacked) when running these operations.

Baseline Methods and Evaluation Metrics. We select two rep-
resentative baseline methods under the categories of kernel-based
and Markovian anomaly detection techniques: Nearest Neighbor
(kNN) [32] and Hidden Markov Model (HMM) [45]. Both methods
have been shown efficient for detecting anomalies in event sequence
data in previous research [7,39,47]. More specifically, the longest com-
mon subsequence (LCS) was used as the distance metric in kNN. We
use standard information retrieval metrics (precision, recall, and ROC)
to evaluate the performance of our approach and these two baseline
methods. Because the number of positive and negative instances are
imbalanced in the dataset, we use the precision-recall curves and ROC
curves to comprehensively illustrate the performance of the algorithms.

Evaluation Results. Our algorithm outperforms the baseline meth-
ods as shown in Fig 5. The ROC plot (Fig 5(a)) illustrates that VA
achieves higher true positive rates when the false positive rates remain
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low (below 0.25) compared to the other two baseline methods. The
precision-recall plot (Fig 5(b)) shows that VA had overall higher preci-
sion than the baseline methods. The results indicate that our approach
can produce a higher quality set of suspicious sequences when com-
pared to the baseline algorithms. Using the designed visualization, the
system can further support the interpretation of detected anomalies.

6.2 Case Studies
In this section, we report the results of three real-world cases to demon-
strate the capabilities of ET3 in finding interpretable anomalies in
general event sequence datasets.

6.2.1 Misuse of Prescription Drugs

We applied ET3 to MIMIC [28], a publicly accessible critical care
database with de-identified electronic health records for 46,520 patients
with 12,487 event types in total. Due to the diversity of sequence pro-
gression for patients with different diseases, training with the entire
database could introduce noise and produce inaccurate anomaly re-
sults. With this consideration, we selected a subgroup of 7,537 patients
who were diagnosed with cardiovascular diseases to produce a more
homogeneous set of sequence progressions for the training set.

Four cardiologists (E1–E4, 5–8 years of domain experience each)
were invited to participate in our study. Prior to the study, the doctors
were asked about expected patterns of anomaly and they expressed
interests in exploring anomalous medical usage within the follow-up
lab test results, based on which we extracted 87 event types under the
category of prescriptions and lab events. The sequences were sent to
the analysis module for training the model. 404 anomalous sequences
were detected for subsequent analysis. The study session lasted approx-
imately 1 hour, starting with a 10-minute introduction to the dataset
and the system design, followed by a 5-minute demonstration of an
example use case. After some practice, the doctors were asked to ex-
plore the analysis results with our system, demonstrate domain-relevant
insights, and provide feedback on the system’s usability. The system
was projected to a large screen for all experts to inspect simultaneously,
and one of the experts (E1) was responsible for operating the system.
The experts were asked to think out loud and make comments at any
time during the session. The entire study procedure was recorded and
their comments are discussed in Section 6.3.

After a brief inspection of the overview, the experts chose a patient
who was far away from the main cluster with a relatively high anomaly
score (as shown in Fig. 4(1)), and then retrieved 105 similar patients
with the distance to the mean sequence under 0.2 for subsequent anal-
ysis (as shown in Fig. 4(2)). After the flow overview was loaded, the
experts quickly scrolled the view back and forth to get a big picture
view of the major sequence progression paths. They found that the
treatment plans for the patients were very similar, and speculated that
all of these patients were suffering from epilepsy and diabetes as there
was regular use of Phenytoin and Insulin along the clinical paths (as
shown in Fig. 6(a)). They then took a careful look at the flow of the
anomalous patient, and noticed that most events were in agreement
with the major trend. However, the patient showed several exceptional
events in the second and the third time slots (Fig. 4(g)). They decided to
focus their analysis around these time slots. By splitting the sequence
of the anomalous patient from others, the comparison glyphs uncovered
suspicious events at each time slot. The experts briefly browsed the
events displayed in the glyphs and noticed an abnormal lab event with
a 0.59 anomaly score and 100% support rate, CK-MB (Fig. 6(i)). “This
is a critical indicator for myocardial infarction”, E1 said. The experts
also found an event that was continuously missing in several time slots
throughout the entire progression, Hydralazine (Fig. 4(b)). “This drug
is mainly applied to patients with chronic heart failure” explained E2.
“This may imply different causes of epilepsy. Both heart diseases can
potentially cause epileptic seizure.” The experts then decided to ex-
plore the redundant medicines highlighted in the comparison glyphs
to investigate the differences in the treatment plan. Apart from sev-
eral anesthetics used for pain relief, the doctors surprisingly found no
medicines aimed directly at curing myocardial infarction. “This is un-
usual,” E1 said, “It seems the patient was treated as a regular epileptic
patient.” They also found a type of medicine, Pheonobarbital(Fig. 6(ii)),

Fig. 6. The anomaly detection result of MIMIC dataset. The system iden-
tified major progression paths (a-b), from which the sequence anomaly
deviates in (i) an anomalous lab test result and the (ii) misuse of a
prescription drug.

having an anomaly score of 0.61 and 100% support rate, used only by
the anomalous patient. “To my knowledge, Pheonobarbital is mainly
used for neonatal and childhood seizures according to guidelines,” said
E3. “It is rare to see this drug prescribed for a 69-year-old man.” E4
found this finding especially useful, as he commented: “It is a potential
drug of abuse. Long-time usage can result in physical dependence, thus
should be strictly controlled...I feel this system has great potential to be
applied to monitor drug misuse.”

6.2.2 Application Log Diagnosis

In our second case study, we applied ET3 to a public application log
data, Agavue [17]. It traces the application function calls invoked by
user interactions in a suite of visualization tools embedded in Excel.
The dataset contains 2,212 user sessions with 34 unique event types.
The model detected 143 anomalous sequences in total. A software de-
veloper (E5) familiar with graphing in Excel was invited to participate
in this study. We observed her actions and took notes on her comments
and findings. A document illustrating the meaning of each event in
the dataset was provided before the study to help the participant better
understand her observations during the analysis.

After loading the dataset, the participant observed the overview and
selected a sequence with a high anomaly score for subsequent analy-
sis. She then brushed session sequences with a distance to the mean
sequence under 0.2 to retrieve a group of 103 similar sequences and
started the comparative analysis. By switching to the flow comparison
view, the system revealed anomalous events in the comparison glyphs
in time steps 3–5 and 9 (Fig. 1). The participant started the exploration
from the highlighted anomalies in time steps 3–5. She decided to
neglect the redundant resize (Fig. 1(a)) event as it is a common user
action and has low support rate. She turned instead to time steps 4 and
5, which both showed redundant events for toolBarToogle (Fig. 1(b)).
This indicates a user action of showing or hiding the toolbar. As she
hovered on the event, a path in the flow of the similar records was
highlighted, suggesting another sequence also had the toolBarToogle
event at step 4 and 5 but was identified as normal. She thus decided to
compare this sequence and the anomalous sequence. The participant
clicked on the toolBarToogle event in the comparison view to select
the normal sequence having this event (Fig. 1(1)), and the comparison
glyphs alerted the participant to missing toolTip events (Fig. 1(c)). By
observing the highlighted flow underneath, she realized that toolTip
co-occurred with toolBarToogle in the normal sequence. Thus, she
surmised that a tooltip should normally appear when a user hovers their
mouse on toolbars. However, this did not show up in the sequence
of the anomalous user. She then switched to the sequence compari-
son view to inspect the normal sequences individually and treemaps
compounding the toolBarToogle and toolTip confirm her speculation.

The participant then focused on the missing events time steps 3–5,
which were a series of error events (Fig. 1(d)). She noticed that error
messages were frequently encountered in sequences of “normal” users
but not the anomalous user. To find reasons, she clicked on the error
event to narrow the comparison scope. As shown in Fig. 1(2), two
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Fig. 7. Anomalies detected when analyzing the career paths of a group
of scholars. ET3 identified two anomalous patterns, which includes (a) a
distinctive order of acquiring PhD degree and Assistant Professor, and
(b) a slower promotion progress than usual.

missing events, btnSetData (Fig. 1(e)) and bindFromPrompt (Fig. 1(f))
simultaneously appear in the first stage and the following time steps,
indicating that the lack of the two events prevented the anomalous
sequence from having errors. The participant looked up these events in
the documentation and found that they represent continuous application
calls in response to the user requesting a customized data binding by
pressing the set data button. She suspected that users might have
attempted to bind data with an inappropriate format, which would lead
to an unsuccessful graph. This also explained the redundant event,
readBoundData, in the last time slot, indicating the anomalous user
eventually bound data successfully. In general, this finding suggested
that Agavue should provide more guidance when users try to arbitrarily
bind data to visualizations.

6.2.3 Rare Career Path Detection

We also tested the capability of ET3 in identifying anomalies within
a small event sequence collection using a career path dataset [1]. The
dataset contains 10 types of milestone events of 40 university professors,
such as receiving degrees, publishing papers, and changing academic
positions. We trained the anomaly detection model and received two
anomalous career paths. A graduate student (E6) was invited to analyze
the anomalous sequences and provide feedback. The participant se-
lected one anomaly and a group of similar scholars identified as normal
to start the comparison. He first looked into the stage analysis results
using the reconstruction view. In combination with the flow overview,
he identified the first stage from time step 0 to 5 as the degree obtain-
ment period through a signature PhD event. Time steps afterward were
designated as stage two, representing the career path after graduation.
He then split the anomalous sequence from the flow. As shown in
Fig. 7(a), the comparison glyphs from 4–5 highlighted two redundant
events before the scholar’s career path stage began. He inspected on
the anomalous events at time step 4 and 5, which were obtaining PhD
degree and acquiring assistant professor. Surprisingly, he found the
anomalous scholar experienced these two events in an unexpected order
which suggested the scholar became an assistant professor before ob-
taining a PhD degree. In contrast, the major flow in normal sequences
goes from the PhD to assistant professor. Moreover, no link was found
from assistant professor to PhD in the flow of normal sequences.

The participant then merged stage one and turned to analyze the
career path in stage two. He showed great interest in the promotion
of the assistant professor. He switched to the summarization view to
compare the promotion time of the focal scholar with the rest of the
scholars. As shown in Fig. 7(b), the associate professor events were
all aligned at time step 9 and the professor event at time step 12. The
participant noticed that the career path of the focal scholar was not as
smooth as expected, as it took longer for the scholar to get granted
associate professorship (3,854 days compared to 2,360 days on average)
and get promoted from associate professor to professor (2,051 days
compared to 1,200 days on average).

6.3 Feedback

This section reports subjective feedback collected from post-study
interviews. We summarize the participants’ comments around three
themes: usefulness, system usability, and visualization design.

Usefulness. All participants respond positively when asked if the
anomaly detection technique in ET3 was useful for the analytical tasks
in their area of expertise. The medical experts believed that ET3 helps
detect unusual treatment plans. E1 also mentioned that “we typically
check if the clinical decisions are in accordance with guidelines with sta-
tistical methods, which is adequate in identifying numerical anomalies
such as overdose of antibiotics or anesthetic, however, fail to discover
complex anomalies.” E4 added: “anomalies in medical data can be
a single event or a combination of events.” He felt involving sequen-
tial context in the anomaly analysis can help doctors “discover more
complex anomalous patterns and find the reasons for the anomalies.”
E2 expressed a desire for this system to support predictive analysis:
“if the system can detect anomalous trends ahead, we can take actions
to put the anomalous patient back on track.” E3 found comparing the
anomaly with similar patients especially useful as a way to “provide
evidence for the detection results derived from the machine.” E5 felt
that “diagnose errors with context makes the result easier to understand,”
and suggested that we extend the system’s capability to support analysis
of streaming data for tasks such as “network behavior monitoring”.

System Usability. According to the participants’ feedback, ET3 is
generally easy to use. All three experts (E1,5,6) that navigated the
system expressed their appreciation for the system’s workflow and felt
it “easy to follow.” E5 said: “Following the workflow, we can have the
overview first and drill down to specific anomalous events step by step.”
E6 also commented on the comprehensiveness of the system: “the
system covers information from various aspects. Each view displays
the data from a different angle, but altogether they manage to integrate
nicely.” The medical expert (E1) felt that the flow comparison view
was most informative, as “it gives a clear summarization on patients’
clinical pathways.” He felt the sequence comparison view less useful
because the raw medical records are generally complex and hard to
explore. However, he agreed that “it could help validate findings
when the exploration space is narrowed to a small sub-population after
selection.” E2 also commented that “..when dealing with a large group
of sequences, analyzing anomalous sequences one after another may
be time-consuming.” This suggests a future direction of supporting the
analysis of multiple anomalous sequences simultaneously.

Visualization and Interaction Design. All participants agreed that
all visualization in ET3 were easy to understand. Specifically, E3 felt
the design of the comparison glyph made sense: “It covers two critical
points of how anomalous the event is, and if the analysis result is con-
fident.” He also suggested that “a measure can be defined to combine
these two attributes as they seem correlated”. E2 also mentioned that
the dynamic selection of subgroups is useful, as he explained: “The
analysis result of anomaly can be different in different sub-populations.
This interaction can help us explore the reasons and the effect of anoma-
lies among subgroups of patients efficiently.”

7 CONCLUSION

We have presented ET3, a visual analysis technique designed to support
visual anomaly detection in event sequence data. ET3 incorporates an
unsupervised VAE-based anomaly detection model to identify anoma-
lous sequences and events in an interpretable manner. Based on the
anomaly detection result, a visualization system with multiple coordi-
nated views and rich interactions is provided to facilitate interpretation
via one-to-many sequence comparison. We evaluate the effectiveness
and usefulness of ET3 through a quantitative comparison of the perfor-
mance of our proposed algorithm, three case studies with real-world
datasets, and domain expert interviews. The study results illustrate
the strengths of ET3 and shed light on several directions for future
work. These include enabling predictive anomaly analysis, integrating
an associative measurement for event abnormality that considers both
anomaly score and support rate, and supporting the analysis of multiple
anomalous sequences simultaneously.
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[21] J. Guerra-Gómez, M. L. Pack, C. Plaisant, and B. Shneiderman. Visual-
izing change over time using dynamic hierarchies: Treeversity2 and the
stemview. IEEE Transactions on Visualization and Computer Graphics,
19(12):2566–2575, 2013.

[22] S. Guo, Z. Jin, D. Gotz, F. Du, H. Zha, and N. Cao. Visual progression
analysis of event sequence data. IEEE Transactions on Visualization and
Computer Graphics, 25(1):417–426, 2019.

[23] S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao. Eventthread:
Visual summarization and stage analysis of event sequence data. IEEE
Transactions on Visualization and Computer Graphics, 24(1):56–65, 2018.

[24] M. Hauskrecht, I. Batal, M. Valko, S. Visweswaran, G. F. Cooper, and
G. Clermont. Outlier detection for patient monitoring and alerting. Journal
of Biomedical Informatics, 46(1):47–55, 2013.

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.
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