
ICDA: A Platform for Intelligent Care Delivery Analytics

David Gotz, Harry Stavropoulos, Jimeng Sun, Fei Wang
IBM T.J. Watson Research Center, New York, USA

Abstract

The identification of high-risk patients is a critical component in improving patient outcomes and managing costs.
This paper describes the Intelligent Care Delivery Analytics platform (ICDA), a system which enables risk assess-
ment analytics that process large collections of dynamic electronic medical data to identify at-risk patients. ICDA
works by ingesting large volumes of data into a common data model, then orchestrating a collection of analytics that
identify at-risk patients. It also provides an interactive environment through which users can access and review the
analytics results. In addition, ICDA provides APIs via which analytics results can be retrieved to surface in external
applications. A detailed review of ICDA’s architecture is provided. Descriptions of four use cases are included to
illustrate ICDA’s application within two different data environments. These use cases showcase the system’s flexibility
and exemplify the types of analytics it enables.

1 Introduction

In many healthcare systems, costs and risk are not spread evenly across a population. Instead, a relatively small number
of high-risk patients utilize more medical resources than their peers. Studies have shown that deficits in managing care
for these patients can lead to even higher expenses and poorer outcomes [1]. Such findings have highlighted the need
for systematic efforts that focus on identifying high risk patients and ensuring they receive the most efficient and
effective care possible.

At the same time, adoption rates have been growing for electronic medical data (EMD) systems that store medical
record, claim, lab, and pharmacy information [2]. This change is improving efficiency in many areas and is enabling a
number of technologies that provide new insights into how a medical system is functioning. For example, dashboards
can be developed to summarize overall institutional metrics directly from medical data, including patient re-admission
rates or average length of stay.

In this paper, we describe Intelligent Care Delivery Analytics (ICDA), a predictive risk-assessment system.ICDA is
designed to (1) ingest large volumes of heterogeneous electronic medical data, (2) analyze data for individual patients
by comparing them to their peers using pluggable predictive analytics components which assess various forms of risk,
and (3) provide an interactive environment through which clinical professionals can review and manage the population
of patients identified as at-risk. ICDA is a scalable and general platform for predictive analytics and reporting that
satisfies several key requirements:

• Universal Standards-Based Analytics Environment. Given the wide range of data formats and siloed repos-
itories in many medical institutions, ICDA provides a standards-based (i.e. ICD-9, NDC, CPT) analytics en-
vironment that represents data independently from the source data format. ICDA’s source-agnostic data model
makes it deployable across a wide range of different data environments and legacy systems.

• Open Data Access. Just as data sources are often fragmented across multiple systems, the analysis results
produced by ICDA must be made accessible to an arbitrary set of existing user-facing systems. ICDA provides
both (1) a web-based user interface for risky patient identification and review, and (2) web-based APIs that allow
ICDA risk-assessment data to be accessed by external systems.

• Pluggable Analytics Design. An analytics platform should be configurable to allow for deployments of selected
sets of analytics to match an organization’s risk-assessment needs. This approach also allows for the deploy-
ment of new analytics to an existing installation. ICDA adopts a plugin-based analytics model to support this
requirement where each type of risk assessment is implemented within an independent plugin. At runtime, the
analytics plugins are orchestrated by ICDA and the results are disseminated through the ICDA platform.

264



• Scalable for Large and Dynamic Data Sets. An analytics system must work reliably with high-volume data
environments that change regularly as new patient information becomes available. The ICDA architecture is
designed from the ground up to work in live deployment scenarios where large volumes of patient data must be
regularly gathered and analyzed. This includes a focus on scalability and isolating long-running back-end data
analysis processes from interactive user-facing components.

We provide a detailed description of ICDA’s design and outline how our system architecture satisfies the above re-
quirements. We also discuss four specific risk-assessment use cases that we’ve enabled using ICDA through pilots
with two different medical institutions. The pilot use cases include (1) risk assessment that a patient may be diagnosed
with heart failure within a given time window, (2) treatment comparison for hyperlipidemia to identify patients at risk
of receiving sub-optimal treatments, (3) utilization analytics that identify patients that over- or under-utilize medical
resources, and (4) physician match analytics to identify patients at risk of a poor outcome due to their current physician
assignment.

2 Related Work

Computational analysis of healthcare data has a long history and has been used to study a wide variety of diseases and
conditions. This section provides an overview of the related work most relevant to ICDA.

Patient Population Analytics

Large population studies have been used for decades to investigate a range of medical topics. For example, randomized
controlled trials (RCTs) conducted in the 1940s studied tuberculosis [3]. Meanwhile, longitudinal studies of people in
Framingham, Massachusetts were used in the 1970s to develop the Framingham Criteria, a widely used risk assessment
technique for heart failure [4]. Such studies are often considered the “gold standard” in medical research because they
traditionally utilize data collected specifically for the study and produce statistically rigorous results. However, these
same properties make this type of study relatively time consuming and expensive to conduct.

Researchers have more recently begun looking for ways to utilize existing clinical data and computers to speed the
research process. For example, the i2b2 software platform [5] produced by the NIH-funded National Center for
Biomedical Computing combines medical record data with genomic data and lets users create “mini-databases” for
specific research projects. Another NIH-funded system is iDASH [6], which focuses on providing a secure, privacy-
preserving environment for researchers to share and analyze data. iHealth Explorer [7], meanwhile, provides a web
services model that lets users query databases to manually identify groups of patients. The system then provides a
number of analytic algorithms that can be manually applied to perform tasks such as adverse drug reaction analysis.
Addressing the challenge of unstructured data and conflicting coding schemes, the SHARPn platform [8] includes
features that structure narrative text and normalize data to adhere to common standards.

Such systems can support the development of data-driven risk assessment techniques. For example, work on Hotspot-
ting technology in Camden, New Jersey has helped identify so-called “super utilizers” [9] using EMD. Intervening to
better manage these patients can help reduce costs and improve outcomes. Similarly, data-driven analyses have been
used to estimate risk for developing certain carcinomas [10] and to generate survival estimates for transplant recipi-
ents [11]. These approaches are very useful because they use existing EMD collected during the delivery of care. The
insights they produce can lead to important improvements in our medical understanding. However, unlike ICDA, these
systems are not generally designed to support custom analyses for individual patients to identify specific personalized
insights.

Personalized Insights for Individual Patients

The population-based analysis techniques described above are statistically powerful in part because they carefully
control which patients are included in the study. However, this same property can limit their validity for many patients.
Roughly 45% of primary care patients have multiple morbidities (with even higher percentages for older patients),
making it a challenge for classical evidence-based medicine [12]. For this reason, there is a growing focus on using ad
hoc, individualized analyses of large collections of medical data to inform complex decisions when no suitable trial
can be found [13].

265



Claims/EMR
Databases

ETL

ICDA

W
eb

 G
U

I
R

EST A
PI

Staging
DB

ETL A
PI

Analytic Engines

Analytics Controller

Case
DB

Deployed
DB

Analytic Serializers

Analytic Display Packages

W
eb

 A
p

p
lication

Server

Application Controller
Database Access and

Application Logic

Analytics Subsystem
Access Subsystem

Analytic
A

Analytic
B

Analytic
C

Analytic
A

Analytic
B

Analytic
C

Analytic
B

Analytic
A

Analytic
C

Figure 1: The ICDA architecture consists of an analytics subsystem to coordinate analytic processing, and an access
subsystem to expose the resulting risk assessments. Analytic plugins (each consisting of an analytic engine, a serializer,
and a display package) can be deployed in arbitrary combinations to support specific use cases.

This approach often looks through existing data collected in EMD systems to find a custom set of patients that are
clinically similar to the patient being treated. It then applies analytic algorithms to data from the similar patients
to find insights that can inform the delivery of care [14, 15, 16]. Similar techniques have been use for real-time
monitoring of physiological signals to predict adverse events [17]. While such techniques produce useful insights, they
are computationally expensive to compute. ICDA provides a platform that can support a library of such personalized
data-driven risk analytics and allows them to function at scale in an operational environment. In addition, ICDA makes
this sort of analysis repeatable across multiple data environments and clinical use cases.

3 ICDA Architecture

ICDA is a scalable and flexible platform for predictive analytics and reporting. It provides a common data model and
standard runtime that supports a toolbox of risk assessment components that can identify high-risk patients.

In supporting these capabilities, the ICDA architecture is motivated by four key requirements: (1) a standards-based
analytics environment that allows individual components to be written once and used repeatedly within different
clinical environments; (2) open data access so that risk assessments calculated within ICDA can be surfaced either
though ICDA’s own user interface or though external third-party systems; (3) a pluggable analytics design so that
deployments can be customized for specific use cases without changes to the platform; and (4) support for large scale
and dynamic patient data to provide practical value to large care organizations.

The ICDA architecture is illustrated in Figure 1. At the core of the system is a set of three databases. These databases
serve as the bridge between the two main computational portions of ICDA: (1) the analytics subsystem, which cal-
culates risk assessments for each patient in the database, and (2) the access subsystem, which provides access to the
analytics results for both human users and external systems. As depicted by the color-coded components within the
architecture diagram, an analytic plugin contains three distinct pieces which span both subsystems. The remainder of
this section provides more detail for each of these architectural elements.

Databases

At the center of ICDA are three databases. Two patient databases—a staging database (DBS) and a deployed database
(DBD)—contain detailed patient data including diagnoses, labs, medications, and procedures. Both use the same
underlying data model which adopts widely used standards including ICD, CPT, and NDC. Data is ingested by ICDA

266



into DBS where it is processed by analytics to identify at risk patients. When this process completes, a swap operation
converts DBS to DBD, making the latest data available to users. This process is described in detail in Section 4. The
dual database design allows new patient data to be incrementally loaded and analyzed (a process that can require a
significant level of computation) in DBS without impacting the quality of service for users who access patient data
from DBD.

A third case database (DBC) is used to store analytics results. A case file CPi is created in DBC for each high
risk patient Pi identified by the analytics. The case file links together all risks associated with a given patient and
contains metadata such as case status (new/open/closed) and a timestamp. Case files also capture the history of a given
patient’s risk assessments which is used to ensure that DBC is kept synchronized with DBD as new data arrives and
is processed by the system.

Analytics Subsystem

The analytics subsystem, shown in the lower portion of Figure 1, is responsible for managing the analysis of newly
imported data by coordinating the execution of a set of one or more analytic engines. The set of analytic engines
is specified in a configuration file which is processed by an analytics controller. The controller, launched each time
new data arrives via the extract/transform/load (ETL) API, has four major responsibilities: to (1) launch each of
the analytic engines, (2) monitor the engines’ status to detect and handle errors, (3) store status and result information
within DBC , and (4) trigger the database swap operation to deploy DBS upon successful completion of all configured
analytic engines.

Analytic engines are required to implement a specific API for launching, error reporting, and result production. This
allows the controller to manage any analytic engine configured in the system without specific knowledge of how the
engine works internally. The API is based on a command-line-executable-and-return-code model which provides the
flexibility needed to minimally constrain analytic engine development. This allows for the incorporation of engines
that are written using a wide variety of programming languages (e.g., Java or Python) and statistical analysis libraries
(e.g., R or SPSS). Engines will typically query against DBS to access patient data during processing.

Access Subsystem

The access subsystem, shown in the upper portion of Figure 1, is responsible for providing individual users and
external systems with interactive access to the analytics results. External access to ICDA is supported via a web
application server that services both human users (via a browser-based user interface) and external systems (via a
structured REST-based API). The user interface is shown in Figure 3 and described in more detail in Section 5.

The application controller contains the core platform logic for ICDA’s access subsystem. It processes requests that
arrive via the web application server, manages database access, and provides the query and display logic for the base
platform interfaces such as an inbox (containing a list of newly flagged at risk patients) and clinical summary screens
that visualize the clinical record for an individual patient.

The controller also coordinates the operation of serialization and display packages. At startup, it processes a config-
uration file that specifies the set of analytic packages currently deployed in the system. At runtime, it coordinates the
database queries and rendering routines required to display the current results for each risk factor contained in a given
patient’s case CPi .

The query and rendering logic specific to an individual analytic type is not contained in the controller itself. Instead,
this logic is captured in two key analytic-specific components: a serializer and a display package. These are shown
as color-coded hexagons in Figure 1 and are two of the key pieces that make up an ICDA analytic plugin as defined
later in this section. An analytic serializer contains the logic necessary to query DBD and/or DBC for the unique
analysis results and supporting clinical information produced by the corresponding analytic engine. All executed
queries are routed through the application controller which manages database connections and logging. Serializers
then convert query results to an internal data structure. An analytic display package contains the logic required to
convert a serializer’s data structure to a specified display format such as HTML (for the web-based GUI) or XML (for
the REST API). These components work together to enable analytic-specific interface components which the controller
ties together within a single overall web portal. Both serializers and display packages implement a specific ICDA API

267



Claims/EMR
Databases

ETL

ETL A
PI

Staging
DB

Case
DB

Staging
DB

Deployed
DB

Staging
DB

Deployed
DB

Analytics Controller

Staging
DB

a) Ingestion b) Analytics Execution c) Swap d) Synchronize

Analytic
A

Analytic
B

Analytic
C

Figure 2: Data flow within the ICDA system. (a) New patient data arrives via an ETL process and is stored in the
staging database. (b) The analytic controller then runs the analytic engines and stores results in the case database. (c)
When the results are ready, the deployed and staging databases are swapped. (d) Finally, the new staging database is
synchronized to prepare for the next iteration of analytics.

for instantiation and rendering that let the controller coordinate the user interface without specific knowledge about
their internals.

Another responsibility for the access subsystem is safeguarding protected health information (PHI). The web server
performs user authentication to ensure that only authorized users have access to ICDA data. In addition, all data
access requests made through the application controller are logged along with the requesting user’s identification.
This ensures HIPAA compliance.

Analytics Plugins

The components described above provide a base platform upon which specific risk assessment analytics can be built.
However, the logic required for individual use cases is not part of the core platform. Instead, they are packaged as
analytic plugins which bundle the three components described above: an analytic engine, a serializer, and a display
package.

Engines, serializers and display packages all implement a set of predefined APIs which are then used at runtime by
the core ICDA platform. Each plugin contains a manifest file that references the location of the software components
for the three required components. For a given installation of the ICDA system, a global configuration file specifies
which analytic plugins are actively deployed. The system then discovers and links to the required plugin components
by processing the active plugins’ manifest files.

4 Data Flow

During normal operation, data is loaded into the staging database DBS by an ETL process before being analyzed by
the analytics subsystem. When the analytics process completes, ICDA publishes the newly available analytics results
and newly loaded patient data by performing a database swap that converts DBS to the deployed database DBD.
The data is then served to requesting users and external systems via the access subsystem’s web GUI and REST API,
respectively. This section describes this dataflow which is illustrated in Figure 2.

Ingesting Data

Data is imported into ICDA via the analytic subsystem’s ETL API. For each external data source, an ETL module is
used to extract information from the existing data repository (e.g., an electronic medical record system). The same
module is responsible for a transformation step that maps between coding standards used in external data sources and
those used within ICDA (e.g. ICD, CPT, NDC). Because data formats, system interfaces, and coding systems can vary
widely, the ETL modules supporting data ingestion need to be custom designed for a given deployment. The ETL
modules can be reused only to the extent that source data repository systems rely on standards (such as HL7).

Once the extraction and transformation steps are done, the ETL module loads the data into ICDA through the ETL
API. This file-based API accepts ICDA-formatted data and incrementally updates DBS with new data which is stored

268



in a schema optimized for performing computational analysis on large sets of patient data. When the ingestion process
has completed, a signal is sent to the analytics controller to start an analytics run on the fresh data.

The ingestion of data is typically performed in batch mode on a regular schedule (e.g., nightly or hourly) to keep
patient risk estimates up to date as patients’ conditions change. New ingestions cannot arrive too quickly, however.
The ETL API will block the ingestion of new data if it is attempted prior to the completion of the prior analytics run.

Analytics Execution

After receiving the signal that an updated set of data is present in DBS , the analytics controller launches the set of
active analytics engines, either serially or in parallel, based on dependency relationships defined in the global ICDA
configuration file (dependencies will exist if one analytic engine requires as input the results produced by another).
We refer to a single execution of the full set of analytics engines as a run. Each run is assigned a unique run ID by the
controller which is used for logging and versioning of the results.

As they execute, each analytic engine pulls patient data from DBS and produces as output a file containing a list
of patients that are considered at risk. The engine can also optionally write to a dedicated area in DBS to store
intermediate results, to cache items such as statistical models between runs, or for any other purpose. Engines are also
free to use resources outside of ICDA, such as external databases or even the global internet.

The controller processes the results files produced by the engines and stores the data in DBC . Note that this is the
same DBC as the one being used by the access subsystem. However, new results are marked with the corresponding
run ID as they are stored by the controller. The run ID value is then used to make sure that new results are not surfaced
to the access subsystem until the corresponding analytics controller run has completed successfully. The changeover
to a new run ID for the access subsystem is part of the database swap process described below.

Database Swap-and-Sync

If the analytics controller detects any unrecoverable failure during a run, the data flow halts and an administrator
is notified. In contrast, if all engines complete successfully then the results are ready for deployment to the access
subsystem. This happens via a carefully scripted database “swap-and-sync” operation.

This two-step process beings when the analytics controller notifies the application controller (via a HTTP-based API)
that DBS with DBD have switched roles. This makes the latest patient data available to the access layer. At the same
time, the analytics controller updates the active run ID on DBC , exposing the most recent case status and analytics
results data. Any web sessions active at the time of this swap (for either the user-facing web GUI or the system-facing
REST API) receive an exception indicating that the data has been refreshed and are redirected to the new DBD. The
change is transparent to any new sessions which connect directly to the new DBD.

At this point, the access subsystem has full access to the latest patient data and analytics results. However, the new
DBS , which was until this point the deployed database, does not contain the patient data received during the most
recent ETL update. To complete the full swap-and-sync operation, the new DBS is synchronized with the new DBD.
This is performed as a low-priority process to avoid degrading performance for DBD (which is now serving users’
interactive data requests). After the synchronization step has completed the ETL API is re-opened to accept the next
batch of incremental patient data updates.

5 ICDA User Experience and Analytics Use Cases

ICDA includes a web-based user interface that provides access to detailed reports about the at-risk patients identified
by analytic engines. Users connect to the system using a web browser and are asked to authenticate with a username
and password. Once a user’s credentials have been verified, the user is shown an inbox (see Figure 3(a)) listing all
at-risk patients that the user is permitted to see. The inbox shows the status for each patient’s case file (i.e., new, open
or closed), the date that the case was last modified, and a list of identified risk factors.

Clicking on a patient’s name in the inbox takes the user to a view of the corresponding case file. This view shows a
patient summary that includes a timeline-based display of the patient’s EMD (see Figure 3(b)). It also includes tabs
that display detailed reports for each of the risks identified for the patient. The prototype deployment of our system

269



a) b)

c) d)

e) f )

Figure 3: The web interface for ICDA provides users with (a) an inbox showing patients flagged as high risk, (b) a
patient summary view which provides a temporal summary of the medical record for an individual patient, and (c-f)
targeted reports that convey detailed information supporting each of a patient’s identified risks. Zooming in on the
images in electronic versions of this paper will reveal the full resolution of the screenshots.

270



includes four analytic engines which we describe below. All four of these engines run on the same ICDA platform
despite being developed in the context of two very different data environments at two different institutions.

Heart Failure Risk Prediction

The goal of this plugin is to predict an individual patient’s risk of developing heart failure in a predefined future time
window (e.g., 6 to 18 months). The novelty of this plugin compared to traditional risk assessment techniques is the
focus on a finite (immediate) time window in terms of the prediction. Associating a prediction with a time window
can help users better prioritize intervention strategies. In addition to the risk score, the engine provides a ranked list of
contributing risk factors. This personalized set of risk factors can help providers customize a care plan for an individual
patient. Risk factors include both co-morbid conditions (such as diabetes or hypertension) as well as symptoms (such
as Framingham criteria [4]).

The analytic engine for this plugin uses a predictive modeling pipeline that leverages both structured and unstruc-
tured EMD (diagnoses, medications, lab results and physician notes). In our current prototype, the predictive model
is trained using 7 years worth of data for 50K patients. The model is then used to estimate each patient’s risk of
developing heart failure based on their recent encounters [15].

During each run of the analytics controller, the engine assesses heart failure risk scores for all patients and generates a
list of patients with the highest estimated risk. The display package then renders a report, as shown in Figure 3(c), that
includes a risk score, contributing risk factors, and a visualization of historical disease progression paths observed in
similar patients [18].

Treatment Comparison

The objective of this plugin is to identify patients who are at risk of a sub-optimal outcome due to the treatments they
have received for a specific condition. For example, one may want to compare alternative medications for a difficult-
to-treat hyperlipidemia patient. Those who are receiving under-performing treatments are flagged as at risk along with
data suggesting which alternatives (taken from guidelines) might perform better for the given patient.

The analytic engine for this plugin uses patient-similarity algorithms to identify a cohort of patients that are clinically
most similar to a given target patient. The cohort is then subdivided based on treatments received and the past per-
formance of alternative treatments are then compared. The similarity function is based on a Mahalanobis distance
measure defined over patient characteristics such as co-morbidities, procedures, labs, and medications.

As part of each analytics controller run, the engine assesses all patients to determine the degree of risk they face due to
sub-optimal treatment and produces a list of patients with the highest estimated risk. The plugin’s display package then
renders a report for a patient, as shown in Figure 3(d), that allows for quick comparison of outcomes for alternatively
treated similar patients.

Utilization Pattern Analysis

The goal of this plugin is to identify patients that are at risk due to unexpected utilization patterns. The plugin measures
utilization in terms of the frequency of different visit types (e.g., specialist visits, primary care visits, emergency
or urgent care encounters, etc.). Those patients that are either over- or under-utilizing resources may be at risk of
poor outcomes, excessive costs, or both. Identifying these patients helps identify candidates for more careful care
management.

The analytic engine for this plugin profiles each patient in a population based on the the frequency of various visit
types. These profiles are then segmented into utilization clusters whose clinical features are used to train a classifier
that can predict the expected utilization pattern for a given patient [16].

During each run, the engine assesses all patients to determine those with profiles that diverge most from expected
levels. These patients are deemed at risk. The plugin’s display package then renders a report for each of these patients
conveying both the patient’s actual and expected utilization rates. Especially abnormal visitation rates are marked
visually to make it easy to identify why a given patient was flagged as at risk. For example, Figure 3(e) shows a

271



patient with a higher-than-expected number of urgent care visits but no specialist visits. This patient may be an ideal
candidate for a care management program.

Physician Matching

The objective of this plugin is to predict the best physician assignment for a given patient and to identify those patients
that are at highest risk due to a poor match–given specific patient characteristics and physician experience—with their
current physician. The algorithm both flags at-risk patients and provides a list of recommended physicians with high
match scores. Care managers can use this data as input when recommending second opinions or assigning specialists.

The analytic engine builds a predictive model using characteristics from patients, physicians, and their interactions.
The model maps these characteristics to medical outcomes using a dataset that segregates desired outcomes from
undesired outcomes. The outcome measures are disease specific (e.g., A1C levels for diabetic patients). The model
accounts for clinical differences between patients to allow prediction even when differences exist between the patient
populations treated by different physicians [14].

During each run, the engine assigns a match score for each patient’s current physician as well as alternative physi-
cians. A list of at-risk patients is produced that includes all patients whose current physician match score compares
unfavorably to alternatives. The display package then renders a report, as shown in Figure 3(f), that includes the a
patient’s current physician’s score, and a ranked list of the highest scored alternative physicians. The match scores are
also grouped by practice location to highlight possible differences due to facility rather than practitioner.

6 Conclusion

We described Intelligent Care Delivery Analytics (ICDA), a predictive risk-assessment platform. The system is de-
signed to (1) ingest large volumes of heterogeneous electronic medical data, (2) analyze data for individual patients
by comparing them to their peers using pluggable predictive analytics components which access various forms of risk,
and (3) provide an interactive environment through which clinical professionals can review and manage the population
of patients identified as at-risk.

ICDA provides a universal standards-based analytics environment so that analytic engines for specific risk assessments
can be written once and deployed in multiple settings with heterogeneous data environments. In addition, ICDA
allows easy access to analysis results via both a web-based interface for users and a REST-based API for external
system integration. The pluggable analytics API means that custom deployments of ICDA are possible for different
installations. The design also allows new analytics to be deployed via relatively simple configuration changes. Finally,
ICDA is designed specifically to work at scale for large and dynamic data environments making it practical to deploy
ICDA-based analytics widely across an institution.

We also presented four specific risk assessment use cases that have been enabled by ICDA as part of pilot projects
with two different medical institutions. These experiences highlight the ICDA platform’s ability to support portable
and scalable risk assessment analytics that can help improve care delivery.

Given the promising results of these pilots, we plan to continue expanding ICDA’s capabilities. Directions for future
work include the development of additional analytics engines, a comprehensive evaluation of ICDA’s performance in
a large-scale clinical deployment, and an expansion of ICDA’s architecture to better support on-demand analytics for
use cases where batch-based processing is insufficient.

References

1. Cathy Schoen, Robin Osborn, Sabrina K. H How, Michelle M Doty, and Jordon Peugh. In chronic condition:
Experiences of patients with complex health care needs, in eight countries, 2008. Health Affairs, 28(1):w1–w16,
January 2009.

2. Ashish K Jha, Catherine M DesRoches, Peter D Kralovec, and Maulik S Joshi. A progress report on electronic
health records in U.S. hospitals. Health Affairs, 29(10):1951–1957, October 2010.

3. Streptomycin treatment of pulmonary tuberculosis. British Medical Journal, 2(4582):769–782, October 1948.

272



4. P A McKee, W P Castelli, P M McNamara, and W B Kannel. The natural history of congestive heart failure: the
framingham study. The New England Journal of Medicine, 285(26):1441–1446, December 1971.

5. Shawn N Murphy, Griffin Weber, Michael Mendis, Vivian Gainer, Henry C Chueh, Susanne Churchill, and Isaac
Kohane. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2).
Journal of the American Medical Informatics Association, 17(2):124–130, March 2010.

6. Lucila Ohno-Machado, Vineet Bafna, Aziz A Boxwala, Brian E Chapman, Wendy W Chapman, Kamalika Chaud-
huri, Michele E Day, Claudiu Farcas, Nathaniel D Heintzman, Xiaoqian Jiang, Hyeoneui Kim, Jihoon Kim,
Michael E Matheny, Frederic S Resnic, and Staal A Vinterbo. iDASH: integrating data for analysis, anonymiza-
tion, and sharing. Journal of the American Medical Informatics Association, November 2011.

7. Damien McAullay, Graham Williams, Jie Chen, Huidong Jin, Hongxing He, Ross Sparks, and Chris Kelman.
A delivery framework for health data mining and analytics. In Proceedings of the Twenty-eighth Australasian
conference on Computer Science - Volume 38, ACSC ’05, pages 381–387, Darlinghurst, Australia, Australia,
2005. Australian Computer Society, Inc.

8. Susan Rea, Jyotishman Pathak, Guergana Savova, Thomas A Oniki, Les Westberg, Calvin E Beebe, Cui Tao,
Craig G Parker, Peter J Haug, Stanley M Huff, and Christopher G Chute. Building a robust, scalable and standards-
driven infrastructure for secondary use of EHR data: The SHARPn project. Journal of Biomedical Informatics,
February 2012.

9. Jeffrey Brenner. Building an accountable care organization in camden, NJ. Prescriptions for Excellence in Health
Care Newsletter Supplement, 1(9), July 2010.

10. Masayuki Kurosaki, Naoki Hiramatsu, Minoru Sakamoto, Yoshiyuki Suzuki, Manabu Iwasaki, Akihiro Tamori,
Kentaro Matsuura, Sei Kakinuma, Fuminaka Sugauchi, Naoya Sakamoto, Mina Nakagawa, and Namiki Izumi.
Data mining model using simple and readily available factors could identify patients at high risk for hepatocellular
carcinoma in chronic hepatitis c. Journal of Hepatology, 56(3):602–608, March 2012.

11. Hongying Tang, Mollie R Poynton, John F Hurdle, Bradley C Baird, James K Koford, and Alexander S Goldfarb-
Rumyantzev. Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus. ASAIO
Journal (American Society for Artificial Internal Organs: 1992), 57(4):300–309, August 2011.

12. Denise Campbell-Scherer. Multimorbidity: a challenge for evidence-based medicine. Evidence Based Medicine,
15(6):165–166, December 2010.

13. Jennifer Frankovich, Christopher A. Longhurst, and Scott M. Sutherland. Evidence-Based medicine in the EMR
era. New England Journal of Medicine, pages 1758–1759, November 2011.

14. Hani Neuvirth, Michal Ozery-Flato, Jianying Hu, Jonathan Laserson, Martin S. Kohn, Shahram Ebadollahi, and
Michal Rosen-Zvi. Toward personalized care management of patients at risk: the diabetes case study. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’11,
pages 395–403, New York, NY, USA, 2011. ACM.

15. Jimeng Sun, Dijun Luo, Roy Byrd, Jianying Hu, Shahram Edabollahi, Zahra Daar Steven E. Steinhubl, and
Walter F. Stewart. Scalable predictive modeling pipeline and its application on early detection of heart failures
using electronic health records. AMIA Annual Symposium Proceedings, 2012 submitted.

16. Jianying Hu, Fei Wang, Jimeng Sun, Robert Sorrentino, and Shahram Edabollahi. A utilization analysis frame-
work for hot spotting and anomaly detection. AMIA Annual Symposium Proceedings, 2012 submitted.

17. Shahram Ebadollahi, Jimeng Sun, David Gotz, Jianying Hu, Daby Sow, and Chalapathy Neti. Predicting patient’s
trajectory of physiological data using temporal trends in similar patients: A system for Near-Term prognostics. In
American Medical Informatics Association Annual Symposium (AMIA), Washington, DC, 2010.

18. Krist Wongsuphasawat and David Gotz. Outflow: Visualizing patient flow by symptoms and outcome. In IEEE
VisWeek Workshop on Visual Analytics in Healthcare, Providence, Rhode Island, USA, 2011.

273


